ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmeng GIF version

Theorem fndmeng 6712
Description: A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
fndmeng ((𝐹 Fn 𝐴𝐴𝐶) → 𝐴𝐹)

Proof of Theorem fndmeng
StepHypRef Expression
1 fnex 5650 . . 3 ((𝐹 Fn 𝐴𝐴𝐶) → 𝐹 ∈ V)
2 fnfun 5228 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
32adantr 274 . . 3 ((𝐹 Fn 𝐴𝐴𝐶) → Fun 𝐹)
4 fundmeng 6709 . . 3 ((𝐹 ∈ V ∧ Fun 𝐹) → dom 𝐹𝐹)
51, 3, 4syl2anc 409 . 2 ((𝐹 Fn 𝐴𝐴𝐶) → dom 𝐹𝐹)
6 fndm 5230 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76breq1d 3947 . . 3 (𝐹 Fn 𝐴 → (dom 𝐹𝐹𝐴𝐹))
87adantr 274 . 2 ((𝐹 Fn 𝐴𝐴𝐶) → (dom 𝐹𝐹𝐴𝐹))
95, 8mpbid 146 1 ((𝐹 Fn 𝐴𝐴𝐶) → 𝐴𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1481  Vcvv 2689   class class class wbr 3937  dom cdm 4547  Fun wfun 5125   Fn wfn 5126  cen 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-en 6643
This theorem is referenced by:  fihashfn  10578
  Copyright terms: Public domain W3C validator