ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmeng GIF version

Theorem fndmeng 6878
Description: A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
fndmeng ((𝐹 Fn 𝐴𝐴𝐶) → 𝐴𝐹)

Proof of Theorem fndmeng
StepHypRef Expression
1 fnex 5787 . . 3 ((𝐹 Fn 𝐴𝐴𝐶) → 𝐹 ∈ V)
2 fnfun 5356 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
32adantr 276 . . 3 ((𝐹 Fn 𝐴𝐴𝐶) → Fun 𝐹)
4 fundmeng 6875 . . 3 ((𝐹 ∈ V ∧ Fun 𝐹) → dom 𝐹𝐹)
51, 3, 4syl2anc 411 . 2 ((𝐹 Fn 𝐴𝐴𝐶) → dom 𝐹𝐹)
6 fndm 5358 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76breq1d 4044 . . 3 (𝐹 Fn 𝐴 → (dom 𝐹𝐹𝐴𝐹))
87adantr 276 . 2 ((𝐹 Fn 𝐴𝐴𝐶) → (dom 𝐹𝐹𝐴𝐹))
95, 8mpbid 147 1 ((𝐹 Fn 𝐴𝐴𝐶) → 𝐴𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2167  Vcvv 2763   class class class wbr 4034  dom cdm 4664  Fun wfun 5253   Fn wfn 5254  cen 6806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-en 6809
This theorem is referenced by:  fihashfn  10909
  Copyright terms: Public domain W3C validator