ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst3m GIF version

Theorem fconst3m 5777
Description: Two ways to express a constant function. (Contributed by Jim Kingdon, 8-Jan-2019.)
Assertion
Ref Expression
fconst3m (∃𝑥 𝑥𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵}))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fconst3m
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fconstfvm 5776 . 2 (∃𝑥 𝑥𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = 𝐵)))
2 fnfun 5351 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
3 fndm 5353 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
4 eqimss2 3234 . . . . 5 (dom 𝐹 = 𝐴𝐴 ⊆ dom 𝐹)
53, 4syl 14 . . . 4 (𝐹 Fn 𝐴𝐴 ⊆ dom 𝐹)
6 funconstss 5676 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑦𝐴 (𝐹𝑦) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
72, 5, 6syl2anc 411 . . 3 (𝐹 Fn 𝐴 → (∀𝑦𝐴 (𝐹𝑦) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
87pm5.32i 454 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = 𝐵) ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
91, 8bitrdi 196 1 (∃𝑥 𝑥𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵}))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  wral 2472  wss 3153  {csn 3618  ccnv 4658  dom cdm 4659  cima 4662  Fun wfun 5248   Fn wfn 5249  wf 5250  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262
This theorem is referenced by:  fconst4m  5778
  Copyright terms: Public domain W3C validator