ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst3m GIF version

Theorem fconst3m 5816
Description: Two ways to express a constant function. (Contributed by Jim Kingdon, 8-Jan-2019.)
Assertion
Ref Expression
fconst3m (∃𝑥 𝑥𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵}))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fconst3m
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fconstfvm 5815 . 2 (∃𝑥 𝑥𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = 𝐵)))
2 fnfun 5380 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
3 fndm 5382 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
4 eqimss2 3252 . . . . 5 (dom 𝐹 = 𝐴𝐴 ⊆ dom 𝐹)
53, 4syl 14 . . . 4 (𝐹 Fn 𝐴𝐴 ⊆ dom 𝐹)
6 funconstss 5711 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑦𝐴 (𝐹𝑦) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
72, 5, 6syl2anc 411 . . 3 (𝐹 Fn 𝐴 → (∀𝑦𝐴 (𝐹𝑦) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
87pm5.32i 454 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = 𝐵) ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
91, 8bitrdi 196 1 (∃𝑥 𝑥𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵}))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2177  wral 2485  wss 3170  {csn 3638  ccnv 4682  dom cdm 4683  cima 4686  Fun wfun 5274   Fn wfn 5275  wf 5276  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fo 5286  df-fv 5288
This theorem is referenced by:  fconst4m  5817
  Copyright terms: Public domain W3C validator