![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fconst3m | GIF version |
Description: Two ways to express a constant function. (Contributed by Jim Kingdon, 8-Jan-2019.) |
Ref | Expression |
---|---|
fconst3m | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstfvm 5592 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵))) | |
2 | fnfun 5178 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | fndm 5180 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | eqimss2 3118 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → 𝐴 ⊆ dom 𝐹) | |
5 | 3, 4 | syl 14 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐴 ⊆ dom 𝐹) |
6 | funconstss 5492 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
7 | 2, 5, 6 | syl2anc 406 | . . 3 ⊢ (𝐹 Fn 𝐴 → (∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
8 | 7 | pm5.32i 447 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
9 | 1, 8 | syl6bb 195 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1314 ∃wex 1451 ∈ wcel 1463 ∀wral 2390 ⊆ wss 3037 {csn 3493 ◡ccnv 4498 dom cdm 4499 “ cima 4502 Fun wfun 5075 Fn wfn 5076 ⟶wf 5077 ‘cfv 5081 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-sbc 2879 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-fo 5087 df-fv 5089 |
This theorem is referenced by: fconst4m 5594 |
Copyright terms: Public domain | W3C validator |