ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst3m GIF version

Theorem fconst3m 5793
Description: Two ways to express a constant function. (Contributed by Jim Kingdon, 8-Jan-2019.)
Assertion
Ref Expression
fconst3m (∃𝑥 𝑥𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵}))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fconst3m
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fconstfvm 5792 . 2 (∃𝑥 𝑥𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = 𝐵)))
2 fnfun 5365 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
3 fndm 5367 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
4 eqimss2 3247 . . . . 5 (dom 𝐹 = 𝐴𝐴 ⊆ dom 𝐹)
53, 4syl 14 . . . 4 (𝐹 Fn 𝐴𝐴 ⊆ dom 𝐹)
6 funconstss 5692 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑦𝐴 (𝐹𝑦) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
72, 5, 6syl2anc 411 . . 3 (𝐹 Fn 𝐴 → (∀𝑦𝐴 (𝐹𝑦) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
87pm5.32i 454 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = 𝐵) ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
91, 8bitrdi 196 1 (∃𝑥 𝑥𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵}))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wex 1514  wcel 2175  wral 2483  wss 3165  {csn 3632  ccnv 4672  dom cdm 4673  cima 4676  Fun wfun 5262   Fn wfn 5263  wf 5264  cfv 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fo 5274  df-fv 5276
This theorem is referenced by:  fconst4m  5794
  Copyright terms: Public domain W3C validator