| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fconst3m | GIF version | ||
| Description: Two ways to express a constant function. (Contributed by Jim Kingdon, 8-Jan-2019.) |
| Ref | Expression |
|---|---|
| fconst3m | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstfvm 5792 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵))) | |
| 2 | fnfun 5365 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | fndm 5367 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | eqimss2 3247 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → 𝐴 ⊆ dom 𝐹) | |
| 5 | 3, 4 | syl 14 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐴 ⊆ dom 𝐹) |
| 6 | funconstss 5692 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
| 7 | 2, 5, 6 | syl2anc 411 | . . 3 ⊢ (𝐹 Fn 𝐴 → (∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
| 8 | 7 | pm5.32i 454 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
| 9 | 1, 8 | bitrdi 196 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵})))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 {csn 3632 ◡ccnv 4672 dom cdm 4673 “ cima 4676 Fun wfun 5262 Fn wfn 5263 ⟶wf 5264 ‘cfv 5268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fo 5274 df-fv 5276 |
| This theorem is referenced by: fconst4m 5794 |
| Copyright terms: Public domain | W3C validator |