ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst3m GIF version

Theorem fconst3m 5781
Description: Two ways to express a constant function. (Contributed by Jim Kingdon, 8-Jan-2019.)
Assertion
Ref Expression
fconst3m (∃𝑥 𝑥𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵}))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fconst3m
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fconstfvm 5780 . 2 (∃𝑥 𝑥𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = 𝐵)))
2 fnfun 5355 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
3 fndm 5357 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
4 eqimss2 3238 . . . . 5 (dom 𝐹 = 𝐴𝐴 ⊆ dom 𝐹)
53, 4syl 14 . . . 4 (𝐹 Fn 𝐴𝐴 ⊆ dom 𝐹)
6 funconstss 5680 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑦𝐴 (𝐹𝑦) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
72, 5, 6syl2anc 411 . . 3 (𝐹 Fn 𝐴 → (∀𝑦𝐴 (𝐹𝑦) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
87pm5.32i 454 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = 𝐵) ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
91, 8bitrdi 196 1 (∃𝑥 𝑥𝐴 → (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵}))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  wral 2475  wss 3157  {csn 3622  ccnv 4662  dom cdm 4663  cima 4666  Fun wfun 5252   Fn wfn 5253  wf 5254  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266
This theorem is referenced by:  fconst4m  5782
  Copyright terms: Public domain W3C validator