ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnbrfvb GIF version

Theorem fnbrfvb 5558
Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fnbrfvb ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))

Proof of Theorem fnbrfvb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . 4 (𝐹𝐵) = (𝐹𝐵)
2 funfvex 5534 . . . . . 6 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐹𝐵) ∈ V)
32funfni 5318 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) ∈ V)
4 eqeq2 2187 . . . . . . . 8 (𝑥 = (𝐹𝐵) → ((𝐹𝐵) = 𝑥 ↔ (𝐹𝐵) = (𝐹𝐵)))
5 breq2 4009 . . . . . . . 8 (𝑥 = (𝐹𝐵) → (𝐵𝐹𝑥𝐵𝐹(𝐹𝐵)))
64, 5bibi12d 235 . . . . . . 7 (𝑥 = (𝐹𝐵) → (((𝐹𝐵) = 𝑥𝐵𝐹𝑥) ↔ ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵))))
76imbi2d 230 . . . . . 6 (𝑥 = (𝐹𝐵) → (((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥)) ↔ ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵)))))
8 fneu 5322 . . . . . . 7 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑥 𝐵𝐹𝑥)
9 tz6.12c 5547 . . . . . . 7 (∃!𝑥 𝐵𝐹𝑥 → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
108, 9syl 14 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
117, 10vtoclg 2799 . . . . 5 ((𝐹𝐵) ∈ V → ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵))))
123, 11mpcom 36 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵)))
131, 12mpbii 148 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵𝐹(𝐹𝐵))
14 breq2 4009 . . 3 ((𝐹𝐵) = 𝐶 → (𝐵𝐹(𝐹𝐵) ↔ 𝐵𝐹𝐶))
1513, 14syl5ibcom 155 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
16 fnfun 5315 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
17 funbrfv 5556 . . . 4 (Fun 𝐹 → (𝐵𝐹𝐶 → (𝐹𝐵) = 𝐶))
1816, 17syl 14 . . 3 (𝐹 Fn 𝐴 → (𝐵𝐹𝐶 → (𝐹𝐵) = 𝐶))
1918adantr 276 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐵𝐹𝐶 → (𝐹𝐵) = 𝐶))
2015, 19impbid 129 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  ∃!weu 2026  wcel 2148  Vcvv 2739   class class class wbr 4005  Fun wfun 5212   Fn wfn 5213  cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by:  fnopfvb  5559  funbrfvb  5560  dffn5im  5563  fnsnfv  5577  fndmdif  5623  dffo4  5666  dff13  5771  isoini  5821  1stconst  6224  2ndconst  6225  pw1nct  14837
  Copyright terms: Public domain W3C validator