ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnbrfvb GIF version

Theorem fnbrfvb 5577
Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fnbrfvb ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))

Proof of Theorem fnbrfvb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2189 . . . 4 (𝐹𝐵) = (𝐹𝐵)
2 funfvex 5551 . . . . . 6 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐹𝐵) ∈ V)
32funfni 5335 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) ∈ V)
4 eqeq2 2199 . . . . . . . 8 (𝑥 = (𝐹𝐵) → ((𝐹𝐵) = 𝑥 ↔ (𝐹𝐵) = (𝐹𝐵)))
5 breq2 4022 . . . . . . . 8 (𝑥 = (𝐹𝐵) → (𝐵𝐹𝑥𝐵𝐹(𝐹𝐵)))
64, 5bibi12d 235 . . . . . . 7 (𝑥 = (𝐹𝐵) → (((𝐹𝐵) = 𝑥𝐵𝐹𝑥) ↔ ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵))))
76imbi2d 230 . . . . . 6 (𝑥 = (𝐹𝐵) → (((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥)) ↔ ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵)))))
8 fneu 5339 . . . . . . 7 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑥 𝐵𝐹𝑥)
9 tz6.12c 5564 . . . . . . 7 (∃!𝑥 𝐵𝐹𝑥 → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
108, 9syl 14 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
117, 10vtoclg 2812 . . . . 5 ((𝐹𝐵) ∈ V → ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵))))
123, 11mpcom 36 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵)))
131, 12mpbii 148 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵𝐹(𝐹𝐵))
14 breq2 4022 . . 3 ((𝐹𝐵) = 𝐶 → (𝐵𝐹(𝐹𝐵) ↔ 𝐵𝐹𝐶))
1513, 14syl5ibcom 155 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
16 fnfun 5332 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
17 funbrfv 5575 . . . 4 (Fun 𝐹 → (𝐵𝐹𝐶 → (𝐹𝐵) = 𝐶))
1816, 17syl 14 . . 3 (𝐹 Fn 𝐴 → (𝐵𝐹𝐶 → (𝐹𝐵) = 𝐶))
1918adantr 276 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐵𝐹𝐶 → (𝐹𝐵) = 𝐶))
2015, 19impbid 129 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  ∃!weu 2038  wcel 2160  Vcvv 2752   class class class wbr 4018  Fun wfun 5229   Fn wfn 5230  cfv 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243
This theorem is referenced by:  fnopfvb  5578  funbrfvb  5579  dffn5im  5582  fnsnfv  5596  fndmdif  5642  dffo4  5685  dff13  5790  isoini  5840  1stconst  6246  2ndconst  6247  pw1nct  15211
  Copyright terms: Public domain W3C validator