| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funoprab | GIF version | ||
| Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.) |
| Ref | Expression |
|---|---|
| funoprab.1 | ⊢ ∃*𝑧𝜑 |
| Ref | Expression |
|---|---|
| funoprab | ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funoprab.1 | . . 3 ⊢ ∃*𝑧𝜑 | |
| 2 | 1 | gen2 1474 | . 2 ⊢ ∀𝑥∀𝑦∃*𝑧𝜑 |
| 3 | funoprabg 6057 | . 2 ⊢ (∀𝑥∀𝑦∃*𝑧𝜑 → Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1371 ∃*wmo 2056 Fun wfun 5274 {coprab 5958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-fun 5282 df-oprab 5961 |
| This theorem is referenced by: mpofun 6060 ovidig 6076 ovigg 6079 oprabex 6226 th3qcor 6739 axaddf 8001 axmulf 8002 |
| Copyright terms: Public domain | W3C validator |