![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funoprab | GIF version |
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.) |
Ref | Expression |
---|---|
funoprab.1 | ⊢ ∃*𝑧𝜑 |
Ref | Expression |
---|---|
funoprab | ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funoprab.1 | . . 3 ⊢ ∃*𝑧𝜑 | |
2 | 1 | gen2 1461 | . 2 ⊢ ∀𝑥∀𝑦∃*𝑧𝜑 |
3 | funoprabg 6018 | . 2 ⊢ (∀𝑥∀𝑦∃*𝑧𝜑 → Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∀wal 1362 ∃*wmo 2043 Fun wfun 5249 {coprab 5920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-fun 5257 df-oprab 5923 |
This theorem is referenced by: mpofun 6021 ovidig 6037 ovigg 6040 oprabex 6182 th3qcor 6695 axaddf 7930 axmulf 7931 |
Copyright terms: Public domain | W3C validator |