ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funoprab GIF version

Theorem funoprab 5759
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.)
Hypothesis
Ref Expression
funoprab.1 ∃*𝑧𝜑
Assertion
Ref Expression
funoprab Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem funoprab
StepHypRef Expression
1 funoprab.1 . . 3 ∃*𝑧𝜑
21gen2 1385 . 2 𝑥𝑦∃*𝑧𝜑
3 funoprabg 5758 . 2 (∀𝑥𝑦∃*𝑧𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
42, 3ax-mp 7 1 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Colors of variables: wff set class
Syntax hints:  wal 1288  ∃*wmo 1950  Fun wfun 5022  {coprab 5667
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852  df-opab 3906  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-fun 5030  df-oprab 5670
This theorem is referenced by:  mpt2fun  5761  ovidig  5776  ovigg  5779  oprabex  5913  th3qcor  6410
  Copyright terms: Public domain W3C validator