ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpofvexi GIF version

Theorem mpofvexi 6185
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
fmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
fnmpoi.2 𝐶 ∈ V
mpofvexi.3 𝑅 ∈ V
mpofvexi.4 𝑆 ∈ V
Assertion
Ref Expression
mpofvexi (𝑅𝐹𝑆) ∈ V
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpofvexi
StepHypRef Expression
1 fnmpoi.2 . . 3 𝐶 ∈ V
21gen2 1443 . 2 𝑥𝑦 𝐶 ∈ V
3 mpofvexi.3 . 2 𝑅 ∈ V
4 mpofvexi.4 . 2 𝑆 ∈ V
5 fmpo.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
65mpofvex 6182 . 2 ((∀𝑥𝑦 𝐶 ∈ V ∧ 𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅𝐹𝑆) ∈ V)
72, 3, 4, 6mp3an 1332 1 (𝑅𝐹𝑆) ∈ V
Colors of variables: wff set class
Syntax hints:  wal 1346   = wceq 1348  wcel 2141  Vcvv 2730  (class class class)co 5853  cmpo 5855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fo 5204  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator