ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpofvexi GIF version

Theorem mpofvexi 6350
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
mpofvex.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
mpofvexi.c 𝐶 ∈ V
mpofvexi.3 𝑅 ∈ V
mpofvexi.4 𝑆 ∈ V
Assertion
Ref Expression
mpofvexi (𝑅𝐹𝑆) ∈ V
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpofvexi
StepHypRef Expression
1 mpofvexi.c . . 3 𝐶 ∈ V
21gen2 1496 . 2 𝑥𝑦 𝐶 ∈ V
3 mpofvexi.3 . 2 𝑅 ∈ V
4 mpofvexi.4 . 2 𝑆 ∈ V
5 mpofvex.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
65mpofvex 6349 . 2 ((∀𝑥𝑦 𝐶 ∈ V ∧ 𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅𝐹𝑆) ∈ V)
72, 3, 4, 6mp3an 1371 1 (𝑅𝐹𝑆) ∈ V
Colors of variables: wff set class
Syntax hints:  wal 1393   = wceq 1395  wcel 2200  Vcvv 2799  (class class class)co 6000  cmpo 6002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fo 5323  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285
This theorem is referenced by:  metuex  14513
  Copyright terms: Public domain W3C validator