![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpofvexi | GIF version |
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
mpofvex.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
mpofvexi.c | ⊢ 𝐶 ∈ V |
mpofvexi.3 | ⊢ 𝑅 ∈ V |
mpofvexi.4 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
mpofvexi | ⊢ (𝑅𝐹𝑆) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpofvexi.c | . . 3 ⊢ 𝐶 ∈ V | |
2 | 1 | gen2 1461 | . 2 ⊢ ∀𝑥∀𝑦 𝐶 ∈ V |
3 | mpofvexi.3 | . 2 ⊢ 𝑅 ∈ V | |
4 | mpofvexi.4 | . 2 ⊢ 𝑆 ∈ V | |
5 | mpofvex.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
6 | 5 | mpofvex 6260 | . 2 ⊢ ((∀𝑥∀𝑦 𝐶 ∈ V ∧ 𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅𝐹𝑆) ∈ V) |
7 | 2, 3, 4, 6 | mp3an 1348 | 1 ⊢ (𝑅𝐹𝑆) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∀wal 1362 = wceq 1364 ∈ wcel 2164 Vcvv 2760 (class class class)co 5919 ∈ cmpo 5921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fo 5261 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 |
This theorem is referenced by: metuex 14054 |
Copyright terms: Public domain | W3C validator |