| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpofvexi | GIF version | ||
| Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
| Ref | Expression |
|---|---|
| mpofvex.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| mpofvexi.c | ⊢ 𝐶 ∈ V |
| mpofvexi.3 | ⊢ 𝑅 ∈ V |
| mpofvexi.4 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| mpofvexi | ⊢ (𝑅𝐹𝑆) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpofvexi.c | . . 3 ⊢ 𝐶 ∈ V | |
| 2 | 1 | gen2 1474 | . 2 ⊢ ∀𝑥∀𝑦 𝐶 ∈ V |
| 3 | mpofvexi.3 | . 2 ⊢ 𝑅 ∈ V | |
| 4 | mpofvexi.4 | . 2 ⊢ 𝑆 ∈ V | |
| 5 | mpofvex.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 6 | 5 | mpofvex 6303 | . 2 ⊢ ((∀𝑥∀𝑦 𝐶 ∈ V ∧ 𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅𝐹𝑆) ∈ V) |
| 7 | 2, 3, 4, 6 | mp3an 1350 | 1 ⊢ (𝑅𝐹𝑆) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1371 = wceq 1373 ∈ wcel 2177 Vcvv 2773 (class class class)co 5956 ∈ cmpo 5958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-fo 5285 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 |
| This theorem is referenced by: metuex 14387 |
| Copyright terms: Public domain | W3C validator |