![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpofvexi | GIF version |
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
fnmpoi.2 | ⊢ 𝐶 ∈ V |
mpofvexi.3 | ⊢ 𝑅 ∈ V |
mpofvexi.4 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
mpofvexi | ⊢ (𝑅𝐹𝑆) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
2 | 1 | gen2 1461 | . 2 ⊢ ∀𝑥∀𝑦 𝐶 ∈ V |
3 | mpofvexi.3 | . 2 ⊢ 𝑅 ∈ V | |
4 | mpofvexi.4 | . 2 ⊢ 𝑆 ∈ V | |
5 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
6 | 5 | mpofvex 6247 | . 2 ⊢ ((∀𝑥∀𝑦 𝐶 ∈ V ∧ 𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅𝐹𝑆) ∈ V) |
7 | 2, 3, 4, 6 | mp3an 1348 | 1 ⊢ (𝑅𝐹𝑆) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∀wal 1362 = wceq 1364 ∈ wcel 2164 Vcvv 2760 (class class class)co 5910 ∈ cmpo 5912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4462 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4322 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-rn 4666 df-iota 5207 df-fun 5248 df-fn 5249 df-f 5250 df-fo 5252 df-fv 5254 df-ov 5913 df-oprab 5914 df-mpo 5915 df-1st 6184 df-2nd 6185 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |