ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpofvexi GIF version

Theorem mpofvexi 6304
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
mpofvex.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
mpofvexi.c 𝐶 ∈ V
mpofvexi.3 𝑅 ∈ V
mpofvexi.4 𝑆 ∈ V
Assertion
Ref Expression
mpofvexi (𝑅𝐹𝑆) ∈ V
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpofvexi
StepHypRef Expression
1 mpofvexi.c . . 3 𝐶 ∈ V
21gen2 1474 . 2 𝑥𝑦 𝐶 ∈ V
3 mpofvexi.3 . 2 𝑅 ∈ V
4 mpofvexi.4 . 2 𝑆 ∈ V
5 mpofvex.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
65mpofvex 6303 . 2 ((∀𝑥𝑦 𝐶 ∈ V ∧ 𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅𝐹𝑆) ∈ V)
72, 3, 4, 6mp3an 1350 1 (𝑅𝐹𝑆) ∈ V
Colors of variables: wff set class
Syntax hints:  wal 1371   = wceq 1373  wcel 2177  Vcvv 2773  (class class class)co 5956  cmpo 5958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-fo 5285  df-fv 5287  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239
This theorem is referenced by:  metuex  14387
  Copyright terms: Public domain W3C validator