ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabid2 GIF version

Theorem opabid2 4797
Description: A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.)
Assertion
Ref Expression
opabid2 (Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem opabid2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . 4 𝑧 ∈ V
2 vex 2766 . . . 4 𝑤 ∈ V
3 opeq1 3808 . . . . 5 (𝑥 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑦⟩)
43eleq1d 2265 . . . 4 (𝑥 = 𝑧 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
5 opeq2 3809 . . . . 5 (𝑦 = 𝑤 → ⟨𝑧, 𝑦⟩ = ⟨𝑧, 𝑤⟩)
65eleq1d 2265 . . . 4 (𝑦 = 𝑤 → (⟨𝑧, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴))
71, 2, 4, 6opelopab 4306 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)
87gen2 1464 . 2 𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)
9 relopab 4792 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴}
10 eqrel 4752 . . 3 ((Rel {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ∧ Rel 𝐴) → ({⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴 ↔ ∀𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)))
119, 10mpan 424 . 2 (Rel 𝐴 → ({⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴 ↔ ∀𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)))
128, 11mpbiri 168 1 (Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  wcel 2167  cop 3625  {copab 4093  Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-xp 4669  df-rel 4670
This theorem is referenced by:  opabbi2dv  4815
  Copyright terms: Public domain W3C validator