Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opabid2 | GIF version |
Description: A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.) |
Ref | Expression |
---|---|
opabid2 | ⊢ (Rel 𝐴 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . 4 ⊢ 𝑧 ∈ V | |
2 | vex 2733 | . . . 4 ⊢ 𝑤 ∈ V | |
3 | opeq1 3765 | . . . . 5 ⊢ (𝑥 = 𝑧 → 〈𝑥, 𝑦〉 = 〈𝑧, 𝑦〉) | |
4 | 3 | eleq1d 2239 | . . . 4 ⊢ (𝑥 = 𝑧 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
5 | opeq2 3766 | . . . . 5 ⊢ (𝑦 = 𝑤 → 〈𝑧, 𝑦〉 = 〈𝑧, 𝑤〉) | |
6 | 5 | eleq1d 2239 | . . . 4 ⊢ (𝑦 = 𝑤 → (〈𝑧, 𝑦〉 ∈ 𝐴 ↔ 〈𝑧, 𝑤〉 ∈ 𝐴)) |
7 | 1, 2, 4, 6 | opelopab 4256 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴) |
8 | 7 | gen2 1443 | . 2 ⊢ ∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴) |
9 | relopab 4738 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} | |
10 | eqrel 4700 | . . 3 ⊢ ((Rel {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ∧ Rel 𝐴) → ({〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴 ↔ ∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴))) | |
11 | 9, 10 | mpan 422 | . 2 ⊢ (Rel 𝐴 → ({〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴 ↔ ∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴))) |
12 | 8, 11 | mpbiri 167 | 1 ⊢ (Rel 𝐴 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 = wceq 1348 ∈ wcel 2141 〈cop 3586 {copab 4049 Rel wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-xp 4617 df-rel 4618 |
This theorem is referenced by: opabbi2dv 4760 |
Copyright terms: Public domain | W3C validator |