| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabid2 | GIF version | ||
| Description: A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.) |
| Ref | Expression |
|---|---|
| opabid2 | ⊢ (Rel 𝐴 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 | . . . 4 ⊢ 𝑧 ∈ V | |
| 2 | vex 2775 | . . . 4 ⊢ 𝑤 ∈ V | |
| 3 | opeq1 3819 | . . . . 5 ⊢ (𝑥 = 𝑧 → 〈𝑥, 𝑦〉 = 〈𝑧, 𝑦〉) | |
| 4 | 3 | eleq1d 2274 | . . . 4 ⊢ (𝑥 = 𝑧 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 5 | opeq2 3820 | . . . . 5 ⊢ (𝑦 = 𝑤 → 〈𝑧, 𝑦〉 = 〈𝑧, 𝑤〉) | |
| 6 | 5 | eleq1d 2274 | . . . 4 ⊢ (𝑦 = 𝑤 → (〈𝑧, 𝑦〉 ∈ 𝐴 ↔ 〈𝑧, 𝑤〉 ∈ 𝐴)) |
| 7 | 1, 2, 4, 6 | opelopab 4318 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴) |
| 8 | 7 | gen2 1473 | . 2 ⊢ ∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴) |
| 9 | relopab 4804 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} | |
| 10 | eqrel 4764 | . . 3 ⊢ ((Rel {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ∧ Rel 𝐴) → ({〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴 ↔ ∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴))) | |
| 11 | 9, 10 | mpan 424 | . 2 ⊢ (Rel 𝐴 → ({〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴 ↔ ∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴))) |
| 12 | 8, 11 | mpbiri 168 | 1 ⊢ (Rel 𝐴 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 ∈ wcel 2176 〈cop 3636 {copab 4104 Rel wrel 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 df-xp 4681 df-rel 4682 |
| This theorem is referenced by: opabbi2dv 4827 |
| Copyright terms: Public domain | W3C validator |