ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oaexg GIF version

Theorem oaexg 6352
Description: Ordinal addition is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
oaexg ((𝐴𝑉𝐵𝑊) → (𝐴 +o 𝐵) ∈ V)

Proof of Theorem oaexg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2692 . . . 4 𝑦 ∈ V
2 vex 2692 . . . . 5 𝑥 ∈ V
3 oafnex 6348 . . . . 5 (𝑧 ∈ V ↦ suc 𝑧) Fn V
42, 3rdgexg 6294 . . . 4 (𝑦 ∈ V → (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦) ∈ V)
51, 4ax-mp 5 . . 3 (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦) ∈ V
65gen2 1427 . 2 𝑥𝑦(rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦) ∈ V
7 df-oadd 6325 . . 3 +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
87mpofvex 6109 . 2 ((∀𝑥𝑦(rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦) ∈ V ∧ 𝐴𝑉𝐵𝑊) → (𝐴 +o 𝐵) ∈ V)
96, 8mp3an1 1303 1 ((𝐴𝑉𝐵𝑊) → (𝐴 +o 𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1330  wcel 1481  Vcvv 2689  cmpt 3997  Oncon0 4293  suc csuc 4295  cfv 5131  (class class class)co 5782  reccrdg 6274   +o coa 6318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325
This theorem is referenced by:  omfnex  6353  oav2  6367
  Copyright terms: Public domain W3C validator