ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oaexg GIF version

Theorem oaexg 6602
Description: Ordinal addition is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
oaexg ((𝐴𝑉𝐵𝑊) → (𝐴 +o 𝐵) ∈ V)

Proof of Theorem oaexg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . 4 𝑦 ∈ V
2 vex 2802 . . . . 5 𝑥 ∈ V
3 oafnex 6598 . . . . 5 (𝑧 ∈ V ↦ suc 𝑧) Fn V
42, 3rdgexg 6541 . . . 4 (𝑦 ∈ V → (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦) ∈ V)
51, 4ax-mp 5 . . 3 (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦) ∈ V
65gen2 1496 . 2 𝑥𝑦(rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦) ∈ V
7 df-oadd 6572 . . 3 +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
87mpofvex 6357 . 2 ((∀𝑥𝑦(rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦) ∈ V ∧ 𝐴𝑉𝐵𝑊) → (𝐴 +o 𝐵) ∈ V)
96, 8mp3an1 1358 1 ((𝐴𝑉𝐵𝑊) → (𝐴 +o 𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1393  wcel 2200  Vcvv 2799  cmpt 4145  Oncon0 4454  suc csuc 4456  cfv 5318  (class class class)co 6007  reccrdg 6521   +o coa 6565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-oadd 6572
This theorem is referenced by:  omfnex  6603  oav2  6617
  Copyright terms: Public domain W3C validator