| Step | Hyp | Ref
 | Expression | 
| 1 |   | grpinva.c | 
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) | 
| 2 |   | grpinva.o | 
. 2
⊢ (𝜑 → 𝑂 ∈ 𝐵) | 
| 3 |   | grpinva.i | 
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂 + 𝑥) = 𝑥) | 
| 4 |   | grpinva.a | 
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | 
| 5 |   | grpinva.r | 
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 𝑂) | 
| 6 | 1 | 3expb 1206 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) | 
| 7 | 6 | caovclg 6076 | 
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢 + 𝑣) ∈ 𝐵) | 
| 8 | 7 | adantlr 477 | 
. . 3
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢 + 𝑣) ∈ 𝐵) | 
| 9 |   | grpinva.x | 
. . 3
⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐵) | 
| 10 |   | grpinva.n | 
. . 3
⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ 𝐵) | 
| 11 | 8, 9, 10 | caovcld 6077 | 
. 2
⊢ ((𝜑 ∧ 𝜓) → (𝑋 + 𝑁) ∈ 𝐵) | 
| 12 | 4 | caovassg 6082 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤))) | 
| 13 | 12 | adantlr 477 | 
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤))) | 
| 14 | 13, 9, 10, 11 | caovassd 6083 | 
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝑋 + 𝑁) + (𝑋 + 𝑁)) = (𝑋 + (𝑁 + (𝑋 + 𝑁)))) | 
| 15 |   | grpinva.e | 
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → (𝑁 + 𝑋) = 𝑂) | 
| 16 | 15 | oveq1d 5937 | 
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 + 𝑋) + 𝑁) = (𝑂 + 𝑁)) | 
| 17 | 13, 10, 9, 10 | caovassd 6083 | 
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 + 𝑋) + 𝑁) = (𝑁 + (𝑋 + 𝑁))) | 
| 18 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑦 = 𝑁 → (𝑂 + 𝑦) = (𝑂 + 𝑁)) | 
| 19 |   | id 19 | 
. . . . . . 7
⊢ (𝑦 = 𝑁 → 𝑦 = 𝑁) | 
| 20 | 18, 19 | eqeq12d 2211 | 
. . . . . 6
⊢ (𝑦 = 𝑁 → ((𝑂 + 𝑦) = 𝑦 ↔ (𝑂 + 𝑁) = 𝑁)) | 
| 21 | 3 | ralrimiva 2570 | 
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑂 + 𝑥) = 𝑥) | 
| 22 |   | oveq2 5930 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑂 + 𝑥) = (𝑂 + 𝑦)) | 
| 23 |   | id 19 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | 
| 24 | 22, 23 | eqeq12d 2211 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑂 + 𝑥) = 𝑥 ↔ (𝑂 + 𝑦) = 𝑦)) | 
| 25 | 24 | cbvralvw 2733 | 
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐵 (𝑂 + 𝑥) = 𝑥 ↔ ∀𝑦 ∈ 𝐵 (𝑂 + 𝑦) = 𝑦) | 
| 26 | 21, 25 | sylib 122 | 
. . . . . . 7
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝑂 + 𝑦) = 𝑦) | 
| 27 | 26 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → ∀𝑦 ∈ 𝐵 (𝑂 + 𝑦) = 𝑦) | 
| 28 | 20, 27, 10 | rspcdva 2873 | 
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → (𝑂 + 𝑁) = 𝑁) | 
| 29 | 16, 17, 28 | 3eqtr3d 2237 | 
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝑁 + (𝑋 + 𝑁)) = 𝑁) | 
| 30 | 29 | oveq2d 5938 | 
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝑋 + (𝑁 + (𝑋 + 𝑁))) = (𝑋 + 𝑁)) | 
| 31 | 14, 30 | eqtrd 2229 | 
. 2
⊢ ((𝜑 ∧ 𝜓) → ((𝑋 + 𝑁) + (𝑋 + 𝑁)) = (𝑋 + 𝑁)) | 
| 32 | 1, 2, 3, 4, 5, 11,
31 | grpinvalem 13028 | 
1
⊢ ((𝜑 ∧ 𝜓) → (𝑋 + 𝑁) = 𝑂) |