ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzin2 GIF version

Theorem uzin2 10998
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin2 ((𝐴 ∈ ran β„€β‰₯ ∧ 𝐡 ∈ ran β„€β‰₯) β†’ (𝐴 ∩ 𝐡) ∈ ran β„€β‰₯)

Proof of Theorem uzin2
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 9533 . . . 4 β„€β‰₯:β„€βŸΆπ’« β„€
2 ffn 5367 . . . 4 (β„€β‰₯:β„€βŸΆπ’« β„€ β†’ β„€β‰₯ Fn β„€)
31, 2ax-mp 5 . . 3 β„€β‰₯ Fn β„€
4 fvelrnb 5565 . . 3 (β„€β‰₯ Fn β„€ β†’ (𝐴 ∈ ran β„€β‰₯ ↔ βˆƒπ‘₯ ∈ β„€ (β„€β‰₯β€˜π‘₯) = 𝐴))
53, 4ax-mp 5 . 2 (𝐴 ∈ ran β„€β‰₯ ↔ βˆƒπ‘₯ ∈ β„€ (β„€β‰₯β€˜π‘₯) = 𝐴)
6 fvelrnb 5565 . . 3 (β„€β‰₯ Fn β„€ β†’ (𝐡 ∈ ran β„€β‰₯ ↔ βˆƒπ‘¦ ∈ β„€ (β„€β‰₯β€˜π‘¦) = 𝐡))
73, 6ax-mp 5 . 2 (𝐡 ∈ ran β„€β‰₯ ↔ βˆƒπ‘¦ ∈ β„€ (β„€β‰₯β€˜π‘¦) = 𝐡)
8 ineq1 3331 . . 3 ((β„€β‰₯β€˜π‘₯) = 𝐴 β†’ ((β„€β‰₯β€˜π‘₯) ∩ (β„€β‰₯β€˜π‘¦)) = (𝐴 ∩ (β„€β‰₯β€˜π‘¦)))
98eleq1d 2246 . 2 ((β„€β‰₯β€˜π‘₯) = 𝐴 β†’ (((β„€β‰₯β€˜π‘₯) ∩ (β„€β‰₯β€˜π‘¦)) ∈ ran β„€β‰₯ ↔ (𝐴 ∩ (β„€β‰₯β€˜π‘¦)) ∈ ran β„€β‰₯))
10 ineq2 3332 . . 3 ((β„€β‰₯β€˜π‘¦) = 𝐡 β†’ (𝐴 ∩ (β„€β‰₯β€˜π‘¦)) = (𝐴 ∩ 𝐡))
1110eleq1d 2246 . 2 ((β„€β‰₯β€˜π‘¦) = 𝐡 β†’ ((𝐴 ∩ (β„€β‰₯β€˜π‘¦)) ∈ ran β„€β‰₯ ↔ (𝐴 ∩ 𝐡) ∈ ran β„€β‰₯))
12 uzin 9562 . . 3 ((π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€) β†’ ((β„€β‰₯β€˜π‘₯) ∩ (β„€β‰₯β€˜π‘¦)) = (β„€β‰₯β€˜if(π‘₯ ≀ 𝑦, 𝑦, π‘₯)))
13 simpr 110 . . . . 5 ((π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€) β†’ 𝑦 ∈ β„€)
14 simpl 109 . . . . 5 ((π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€) β†’ π‘₯ ∈ β„€)
15 zdcle 9331 . . . . 5 ((π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€) β†’ DECID π‘₯ ≀ 𝑦)
1613, 14, 15ifcldcd 3572 . . . 4 ((π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€) β†’ if(π‘₯ ≀ 𝑦, 𝑦, π‘₯) ∈ β„€)
17 fnfvelrn 5650 . . . 4 ((β„€β‰₯ Fn β„€ ∧ if(π‘₯ ≀ 𝑦, 𝑦, π‘₯) ∈ β„€) β†’ (β„€β‰₯β€˜if(π‘₯ ≀ 𝑦, 𝑦, π‘₯)) ∈ ran β„€β‰₯)
183, 16, 17sylancr 414 . . 3 ((π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€) β†’ (β„€β‰₯β€˜if(π‘₯ ≀ 𝑦, 𝑦, π‘₯)) ∈ ran β„€β‰₯)
1912, 18eqeltrd 2254 . 2 ((π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€) β†’ ((β„€β‰₯β€˜π‘₯) ∩ (β„€β‰₯β€˜π‘¦)) ∈ ran β„€β‰₯)
205, 7, 9, 11, 192gencl 2772 1 ((𝐴 ∈ ran β„€β‰₯ ∧ 𝐡 ∈ ran β„€β‰₯) β†’ (𝐴 ∩ 𝐡) ∈ ran β„€β‰₯)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆƒwrex 2456   ∩ cin 3130  ifcif 3536  π’« cpw 3577   class class class wbr 4005  ran crn 4629   Fn wfn 5213  βŸΆwf 5214  β€˜cfv 5218   ≀ cle 7995  β„€cz 9255  β„€β‰₯cuz 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531
This theorem is referenced by:  rexanuz  10999
  Copyright terms: Public domain W3C validator