| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzin2 | GIF version | ||
| Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.) |
| Ref | Expression |
|---|---|
| uzin2 | ⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 9651 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | ffn 5425 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ℤ≥ Fn ℤ) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ℤ≥ Fn ℤ |
| 4 | fvelrnb 5626 | . . 3 ⊢ (ℤ≥ Fn ℤ → (𝐴 ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = 𝐴)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = 𝐴) |
| 6 | fvelrnb 5626 | . . 3 ⊢ (ℤ≥ Fn ℤ → (𝐵 ∈ ran ℤ≥ ↔ ∃𝑦 ∈ ℤ (ℤ≥‘𝑦) = 𝐵)) | |
| 7 | 3, 6 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ ran ℤ≥ ↔ ∃𝑦 ∈ ℤ (ℤ≥‘𝑦) = 𝐵) |
| 8 | ineq1 3367 | . . 3 ⊢ ((ℤ≥‘𝑥) = 𝐴 → ((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) = (𝐴 ∩ (ℤ≥‘𝑦))) | |
| 9 | 8 | eleq1d 2274 | . 2 ⊢ ((ℤ≥‘𝑥) = 𝐴 → (((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥ ↔ (𝐴 ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥)) |
| 10 | ineq2 3368 | . . 3 ⊢ ((ℤ≥‘𝑦) = 𝐵 → (𝐴 ∩ (ℤ≥‘𝑦)) = (𝐴 ∩ 𝐵)) | |
| 11 | 10 | eleq1d 2274 | . 2 ⊢ ((ℤ≥‘𝑦) = 𝐵 → ((𝐴 ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥ ↔ (𝐴 ∩ 𝐵) ∈ ran ℤ≥)) |
| 12 | uzin 9681 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) = (ℤ≥‘if(𝑥 ≤ 𝑦, 𝑦, 𝑥))) | |
| 13 | simpr 110 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ) | |
| 14 | simpl 109 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ) | |
| 15 | zdcle 9449 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → DECID 𝑥 ≤ 𝑦) | |
| 16 | 13, 14, 15 | ifcldcd 3608 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℤ) |
| 17 | fnfvelrn 5712 | . . . 4 ⊢ ((ℤ≥ Fn ℤ ∧ if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℤ) → (ℤ≥‘if(𝑥 ≤ 𝑦, 𝑦, 𝑥)) ∈ ran ℤ≥) | |
| 18 | 3, 16, 17 | sylancr 414 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℤ≥‘if(𝑥 ≤ 𝑦, 𝑦, 𝑥)) ∈ ran ℤ≥) |
| 19 | 12, 18 | eqeltrd 2282 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥) |
| 20 | 5, 7, 9, 11, 19 | 2gencl 2805 | 1 ⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 ∃wrex 2485 ∩ cin 3165 ifcif 3571 𝒫 cpw 3616 class class class wbr 4044 ran crn 4676 Fn wfn 5266 ⟶wf 5267 ‘cfv 5271 ≤ cle 8108 ℤcz 9372 ℤ≥cuz 9648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 |
| This theorem is referenced by: rexanuz 11299 |
| Copyright terms: Public domain | W3C validator |