ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzin2 GIF version

Theorem uzin2 11493
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin2 ((𝐴 ∈ ran ℤ𝐵 ∈ ran ℤ) → (𝐴𝐵) ∈ ran ℤ)

Proof of Theorem uzin2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 9721 . . . 4 :ℤ⟶𝒫 ℤ
2 ffn 5472 . . . 4 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
31, 2ax-mp 5 . . 3 Fn ℤ
4 fvelrnb 5680 . . 3 (ℤ Fn ℤ → (𝐴 ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = 𝐴))
53, 4ax-mp 5 . 2 (𝐴 ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = 𝐴)
6 fvelrnb 5680 . . 3 (ℤ Fn ℤ → (𝐵 ∈ ran ℤ ↔ ∃𝑦 ∈ ℤ (ℤ𝑦) = 𝐵))
73, 6ax-mp 5 . 2 (𝐵 ∈ ran ℤ ↔ ∃𝑦 ∈ ℤ (ℤ𝑦) = 𝐵)
8 ineq1 3398 . . 3 ((ℤ𝑥) = 𝐴 → ((ℤ𝑥) ∩ (ℤ𝑦)) = (𝐴 ∩ (ℤ𝑦)))
98eleq1d 2298 . 2 ((ℤ𝑥) = 𝐴 → (((ℤ𝑥) ∩ (ℤ𝑦)) ∈ ran ℤ ↔ (𝐴 ∩ (ℤ𝑦)) ∈ ran ℤ))
10 ineq2 3399 . . 3 ((ℤ𝑦) = 𝐵 → (𝐴 ∩ (ℤ𝑦)) = (𝐴𝐵))
1110eleq1d 2298 . 2 ((ℤ𝑦) = 𝐵 → ((𝐴 ∩ (ℤ𝑦)) ∈ ran ℤ ↔ (𝐴𝐵) ∈ ran ℤ))
12 uzin 9751 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑥) ∩ (ℤ𝑦)) = (ℤ‘if(𝑥𝑦, 𝑦, 𝑥)))
13 simpr 110 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
14 simpl 109 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ)
15 zdcle 9519 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → DECID 𝑥𝑦)
1613, 14, 15ifcldcd 3640 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℤ)
17 fnfvelrn 5766 . . . 4 ((ℤ Fn ℤ ∧ if(𝑥𝑦, 𝑦, 𝑥) ∈ ℤ) → (ℤ‘if(𝑥𝑦, 𝑦, 𝑥)) ∈ ran ℤ)
183, 16, 17sylancr 414 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℤ‘if(𝑥𝑦, 𝑦, 𝑥)) ∈ ran ℤ)
1912, 18eqeltrd 2306 . 2 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑥) ∩ (ℤ𝑦)) ∈ ran ℤ)
205, 7, 9, 11, 192gencl 2833 1 ((𝐴 ∈ ran ℤ𝐵 ∈ ran ℤ) → (𝐴𝐵) ∈ ran ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509  cin 3196  ifcif 3602  𝒫 cpw 3649   class class class wbr 4082  ran crn 4719   Fn wfn 5312  wf 5313  cfv 5317  cle 8178  cz 9442  cuz 9718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719
This theorem is referenced by:  rexanuz  11494
  Copyright terms: Public domain W3C validator