ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzin2 GIF version

Theorem uzin2 10898
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin2 ((𝐴 ∈ ran ℤ𝐵 ∈ ran ℤ) → (𝐴𝐵) ∈ ran ℤ)

Proof of Theorem uzin2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 9447 . . . 4 :ℤ⟶𝒫 ℤ
2 ffn 5321 . . . 4 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
31, 2ax-mp 5 . . 3 Fn ℤ
4 fvelrnb 5518 . . 3 (ℤ Fn ℤ → (𝐴 ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = 𝐴))
53, 4ax-mp 5 . 2 (𝐴 ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = 𝐴)
6 fvelrnb 5518 . . 3 (ℤ Fn ℤ → (𝐵 ∈ ran ℤ ↔ ∃𝑦 ∈ ℤ (ℤ𝑦) = 𝐵))
73, 6ax-mp 5 . 2 (𝐵 ∈ ran ℤ ↔ ∃𝑦 ∈ ℤ (ℤ𝑦) = 𝐵)
8 ineq1 3302 . . 3 ((ℤ𝑥) = 𝐴 → ((ℤ𝑥) ∩ (ℤ𝑦)) = (𝐴 ∩ (ℤ𝑦)))
98eleq1d 2226 . 2 ((ℤ𝑥) = 𝐴 → (((ℤ𝑥) ∩ (ℤ𝑦)) ∈ ran ℤ ↔ (𝐴 ∩ (ℤ𝑦)) ∈ ran ℤ))
10 ineq2 3303 . . 3 ((ℤ𝑦) = 𝐵 → (𝐴 ∩ (ℤ𝑦)) = (𝐴𝐵))
1110eleq1d 2226 . 2 ((ℤ𝑦) = 𝐵 → ((𝐴 ∩ (ℤ𝑦)) ∈ ran ℤ ↔ (𝐴𝐵) ∈ ran ℤ))
12 uzin 9476 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑥) ∩ (ℤ𝑦)) = (ℤ‘if(𝑥𝑦, 𝑦, 𝑥)))
13 simpr 109 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
14 simpl 108 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ)
15 zdcle 9245 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → DECID 𝑥𝑦)
1613, 14, 15ifcldcd 3541 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℤ)
17 fnfvelrn 5601 . . . 4 ((ℤ Fn ℤ ∧ if(𝑥𝑦, 𝑦, 𝑥) ∈ ℤ) → (ℤ‘if(𝑥𝑦, 𝑦, 𝑥)) ∈ ran ℤ)
183, 16, 17sylancr 411 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℤ‘if(𝑥𝑦, 𝑦, 𝑥)) ∈ ran ℤ)
1912, 18eqeltrd 2234 . 2 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑥) ∩ (ℤ𝑦)) ∈ ran ℤ)
205, 7, 9, 11, 192gencl 2745 1 ((𝐴 ∈ ran ℤ𝐵 ∈ ran ℤ) → (𝐴𝐵) ∈ ran ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1335  wcel 2128  wrex 2436  cin 3101  ifcif 3506  𝒫 cpw 3544   class class class wbr 3967  ran crn 4589   Fn wfn 5167  wf 5168  cfv 5172  cle 7915  cz 9172  cuz 9444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-addcom 7834  ax-addass 7836  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-0id 7842  ax-rnegex 7843  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-br 3968  df-opab 4028  df-mpt 4029  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-inn 8839  df-n0 9096  df-z 9173  df-uz 9445
This theorem is referenced by:  rexanuz  10899
  Copyright terms: Public domain W3C validator