![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uzin2 | GIF version |
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.) |
Ref | Expression |
---|---|
uzin2 | β’ ((π΄ β ran β€β₯ β§ π΅ β ran β€β₯) β (π΄ β© π΅) β ran β€β₯) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 9533 | . . . 4 β’ β€β₯:β€βΆπ« β€ | |
2 | ffn 5367 | . . . 4 β’ (β€β₯:β€βΆπ« β€ β β€β₯ Fn β€) | |
3 | 1, 2 | ax-mp 5 | . . 3 β’ β€β₯ Fn β€ |
4 | fvelrnb 5565 | . . 3 β’ (β€β₯ Fn β€ β (π΄ β ran β€β₯ β βπ₯ β β€ (β€β₯βπ₯) = π΄)) | |
5 | 3, 4 | ax-mp 5 | . 2 β’ (π΄ β ran β€β₯ β βπ₯ β β€ (β€β₯βπ₯) = π΄) |
6 | fvelrnb 5565 | . . 3 β’ (β€β₯ Fn β€ β (π΅ β ran β€β₯ β βπ¦ β β€ (β€β₯βπ¦) = π΅)) | |
7 | 3, 6 | ax-mp 5 | . 2 β’ (π΅ β ran β€β₯ β βπ¦ β β€ (β€β₯βπ¦) = π΅) |
8 | ineq1 3331 | . . 3 β’ ((β€β₯βπ₯) = π΄ β ((β€β₯βπ₯) β© (β€β₯βπ¦)) = (π΄ β© (β€β₯βπ¦))) | |
9 | 8 | eleq1d 2246 | . 2 β’ ((β€β₯βπ₯) = π΄ β (((β€β₯βπ₯) β© (β€β₯βπ¦)) β ran β€β₯ β (π΄ β© (β€β₯βπ¦)) β ran β€β₯)) |
10 | ineq2 3332 | . . 3 β’ ((β€β₯βπ¦) = π΅ β (π΄ β© (β€β₯βπ¦)) = (π΄ β© π΅)) | |
11 | 10 | eleq1d 2246 | . 2 β’ ((β€β₯βπ¦) = π΅ β ((π΄ β© (β€β₯βπ¦)) β ran β€β₯ β (π΄ β© π΅) β ran β€β₯)) |
12 | uzin 9562 | . . 3 β’ ((π₯ β β€ β§ π¦ β β€) β ((β€β₯βπ₯) β© (β€β₯βπ¦)) = (β€β₯βif(π₯ β€ π¦, π¦, π₯))) | |
13 | simpr 110 | . . . . 5 β’ ((π₯ β β€ β§ π¦ β β€) β π¦ β β€) | |
14 | simpl 109 | . . . . 5 β’ ((π₯ β β€ β§ π¦ β β€) β π₯ β β€) | |
15 | zdcle 9331 | . . . . 5 β’ ((π₯ β β€ β§ π¦ β β€) β DECID π₯ β€ π¦) | |
16 | 13, 14, 15 | ifcldcd 3572 | . . . 4 β’ ((π₯ β β€ β§ π¦ β β€) β if(π₯ β€ π¦, π¦, π₯) β β€) |
17 | fnfvelrn 5650 | . . . 4 β’ ((β€β₯ Fn β€ β§ if(π₯ β€ π¦, π¦, π₯) β β€) β (β€β₯βif(π₯ β€ π¦, π¦, π₯)) β ran β€β₯) | |
18 | 3, 16, 17 | sylancr 414 | . . 3 β’ ((π₯ β β€ β§ π¦ β β€) β (β€β₯βif(π₯ β€ π¦, π¦, π₯)) β ran β€β₯) |
19 | 12, 18 | eqeltrd 2254 | . 2 β’ ((π₯ β β€ β§ π¦ β β€) β ((β€β₯βπ₯) β© (β€β₯βπ¦)) β ran β€β₯) |
20 | 5, 7, 9, 11, 19 | 2gencl 2772 | 1 β’ ((π΄ β ran β€β₯ β§ π΅ β ran β€β₯) β (π΄ β© π΅) β ran β€β₯) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 βwrex 2456 β© cin 3130 ifcif 3536 π« cpw 3577 class class class wbr 4005 ran crn 4629 Fn wfn 5213 βΆwf 5214 βcfv 5218 β€ cle 7995 β€cz 9255 β€β₯cuz 9530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 |
This theorem is referenced by: rexanuz 10999 |
Copyright terms: Public domain | W3C validator |