![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > metreslem | GIF version |
Description: Lemma for metres 12311. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
metreslem | ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resdmres 4966 | . 2 ⊢ (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ (𝑅 × 𝑅)) | |
2 | ineq2 3218 | . . . 4 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → ((𝑅 × 𝑅) ∩ dom 𝐷) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋))) | |
3 | dmres 4776 | . . . 4 ⊢ dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ dom 𝐷) | |
4 | inxp 4611 | . . . . 5 ⊢ ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)) | |
5 | incom 3215 | . . . . 5 ⊢ ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋)) | |
6 | 4, 5 | eqtr3i 2122 | . . . 4 ⊢ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋)) |
7 | 2, 3, 6 | 3eqtr4g 2157 | . . 3 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅))) |
8 | 7 | reseq2d 4755 | . 2 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
9 | 1, 8 | syl5eqr 2146 | 1 ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 ∩ cin 3020 × cxp 4475 dom cdm 4477 ↾ cres 4479 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 df-opab 3930 df-xp 4483 df-rel 4484 df-cnv 4485 df-dm 4487 df-rn 4488 df-res 4489 |
This theorem is referenced by: xmetres 12310 metres 12311 |
Copyright terms: Public domain | W3C validator |