ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metreslem GIF version

Theorem metreslem 13174
Description: Lemma for metres 13177. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
metreslem (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))

Proof of Theorem metreslem
StepHypRef Expression
1 resdmres 5102 . 2 (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ (𝑅 × 𝑅))
2 ineq2 3322 . . . 4 (dom 𝐷 = (𝑋 × 𝑋) → ((𝑅 × 𝑅) ∩ dom 𝐷) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋)))
3 dmres 4912 . . . 4 dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ dom 𝐷)
4 inxp 4745 . . . . 5 ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑋𝑅) × (𝑋𝑅))
5 incom 3319 . . . . 5 ((𝑋 × 𝑋) ∩ (𝑅 × 𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋))
64, 5eqtr3i 2193 . . . 4 ((𝑋𝑅) × (𝑋𝑅)) = ((𝑅 × 𝑅) ∩ (𝑋 × 𝑋))
72, 3, 63eqtr4g 2228 . . 3 (dom 𝐷 = (𝑋 × 𝑋) → dom (𝐷 ↾ (𝑅 × 𝑅)) = ((𝑋𝑅) × (𝑋𝑅)))
87reseq2d 4891 . 2 (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ dom (𝐷 ↾ (𝑅 × 𝑅))) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
91, 8eqtr3id 2217 1 (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  cin 3120   × cxp 4609  dom cdm 4611  cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623
This theorem is referenced by:  xmetres  13176  metres  13177
  Copyright terms: Public domain W3C validator