ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfir GIF version

Theorem elfir 6861
Description: Sufficient condition for an element of (fi‘𝐵). (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
elfir ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐵))

Proof of Theorem elfir
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 981 . . . . . 6 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐵)
2 elpw2g 4081 . . . . . 6 (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
31, 2syl5ibr 155 . . . . 5 (𝐵𝑉 → ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ 𝒫 𝐵))
43imp 123 . . . 4 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ 𝒫 𝐵)
5 simpr3 989 . . . 4 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ Fin)
64, 5elind 3261 . . 3 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (𝒫 𝐵 ∩ Fin))
7 eqid 2139 . . 3 𝐴 = 𝐴
8 inteq 3774 . . . 4 (𝑥 = 𝐴 𝑥 = 𝐴)
98rspceeqv 2807 . . 3 ((𝐴 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 = 𝐴) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥)
106, 7, 9sylancl 409 . 2 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥)
11 simp2 982 . . . . 5 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
12 fin0 6779 . . . . . 6 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴))
13123ad2ant3 1004 . . . . 5 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴))
1411, 13mpbid 146 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑧 𝑧𝐴)
15 inteximm 4074 . . . 4 (∃𝑧 𝑧𝐴 𝐴 ∈ V)
1614, 15syl 14 . . 3 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ V)
17 id 19 . . 3 (𝐵𝑉𝐵𝑉)
18 elfi 6859 . . 3 (( 𝐴 ∈ V ∧ 𝐵𝑉) → ( 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥))
1916, 17, 18syl2anr 288 . 2 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ( 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥))
2010, 19mpbird 166 1 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wex 1468  wcel 1480  wne 2308  wrex 2417  Vcvv 2686  cin 3070  wss 3071  c0 3363  𝒫 cpw 3510   cint 3771  cfv 5123  Fincfn 6634  ficfi 6856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-er 6429  df-en 6635  df-fin 6637  df-fi 6857
This theorem is referenced by:  ssfii  6862
  Copyright terms: Public domain W3C validator