ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfir GIF version

Theorem elfir 7039
Description: Sufficient condition for an element of (fi‘𝐵). (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
elfir ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐵))

Proof of Theorem elfir
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . . . . 6 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐵)
2 elpw2g 4189 . . . . . 6 (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
31, 2imbitrrid 156 . . . . 5 (𝐵𝑉 → ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ 𝒫 𝐵))
43imp 124 . . . 4 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ 𝒫 𝐵)
5 simpr3 1007 . . . 4 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ Fin)
64, 5elind 3348 . . 3 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (𝒫 𝐵 ∩ Fin))
7 eqid 2196 . . 3 𝐴 = 𝐴
8 inteq 3877 . . . 4 (𝑥 = 𝐴 𝑥 = 𝐴)
98rspceeqv 2886 . . 3 ((𝐴 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 = 𝐴) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥)
106, 7, 9sylancl 413 . 2 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥)
11 simp2 1000 . . . . 5 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
12 fin0 6946 . . . . . 6 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴))
13123ad2ant3 1022 . . . . 5 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴))
1411, 13mpbid 147 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑧 𝑧𝐴)
15 inteximm 4182 . . . 4 (∃𝑧 𝑧𝐴 𝐴 ∈ V)
1614, 15syl 14 . . 3 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ V)
17 id 19 . . 3 (𝐵𝑉𝐵𝑉)
18 elfi 7037 . . 3 (( 𝐴 ∈ V ∧ 𝐵𝑉) → ( 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥))
1916, 17, 18syl2anr 290 . 2 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ( 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥))
2010, 19mpbird 167 1 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  wne 2367  wrex 2476  Vcvv 2763  cin 3156  wss 3157  c0 3450  𝒫 cpw 3605   cint 3874  cfv 5258  Fincfn 6799  ficfi 7034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-er 6592  df-en 6800  df-fin 6802  df-fi 7035
This theorem is referenced by:  ssfii  7040
  Copyright terms: Public domain W3C validator