![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfir | GIF version |
Description: Sufficient condition for an element of (fi‘𝐵). (Contributed by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
elfir | ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆ 𝐵) | |
2 | elpw2g 4186 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | imbitrrid 156 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ 𝒫 𝐵)) |
4 | 3 | imp 124 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ 𝒫 𝐵) |
5 | simpr3 1007 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ Fin) | |
6 | 4, 5 | elind 3345 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (𝒫 𝐵 ∩ Fin)) |
7 | eqid 2193 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝐴 | |
8 | inteq 3874 | . . . 4 ⊢ (𝑥 = 𝐴 → ∩ 𝑥 = ∩ 𝐴) | |
9 | 8 | rspceeqv 2883 | . . 3 ⊢ ((𝐴 ∈ (𝒫 𝐵 ∩ Fin) ∧ ∩ 𝐴 = ∩ 𝐴) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥) |
10 | 6, 7, 9 | sylancl 413 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥) |
11 | simp2 1000 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅) | |
12 | fin0 6943 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧 ∈ 𝐴)) | |
13 | 12 | 3ad2ant3 1022 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧 ∈ 𝐴)) |
14 | 11, 13 | mpbid 147 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑧 𝑧 ∈ 𝐴) |
15 | inteximm 4179 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝐴 → ∩ 𝐴 ∈ V) | |
16 | 14, 15 | syl 14 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∩ 𝐴 ∈ V) |
17 | id 19 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ 𝑉) | |
18 | elfi 7032 | . . 3 ⊢ ((∩ 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (∩ 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥)) | |
19 | 16, 17, 18 | syl2anr 290 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → (∩ 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥)) |
20 | 10, 19 | mpbird 167 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ≠ wne 2364 ∃wrex 2473 Vcvv 2760 ∩ cin 3153 ⊆ wss 3154 ∅c0 3447 𝒫 cpw 3602 ∩ cint 3871 ‘cfv 5255 Fincfn 6796 ficfi 7029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-er 6589 df-en 6797 df-fin 6799 df-fi 7030 |
This theorem is referenced by: ssfii 7035 |
Copyright terms: Public domain | W3C validator |