![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfir | GIF version |
Description: Sufficient condition for an element of (fi‘𝐵). (Contributed by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
elfir | ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 997 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆ 𝐵) | |
2 | elpw2g 4158 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | imbitrrid 156 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ 𝒫 𝐵)) |
4 | 3 | imp 124 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ 𝒫 𝐵) |
5 | simpr3 1005 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ Fin) | |
6 | 4, 5 | elind 3322 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (𝒫 𝐵 ∩ Fin)) |
7 | eqid 2177 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝐴 | |
8 | inteq 3849 | . . . 4 ⊢ (𝑥 = 𝐴 → ∩ 𝑥 = ∩ 𝐴) | |
9 | 8 | rspceeqv 2861 | . . 3 ⊢ ((𝐴 ∈ (𝒫 𝐵 ∩ Fin) ∧ ∩ 𝐴 = ∩ 𝐴) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥) |
10 | 6, 7, 9 | sylancl 413 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥) |
11 | simp2 998 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅) | |
12 | fin0 6887 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧 ∈ 𝐴)) | |
13 | 12 | 3ad2ant3 1020 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧 ∈ 𝐴)) |
14 | 11, 13 | mpbid 147 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑧 𝑧 ∈ 𝐴) |
15 | inteximm 4151 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝐴 → ∩ 𝐴 ∈ V) | |
16 | 14, 15 | syl 14 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∩ 𝐴 ∈ V) |
17 | id 19 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ 𝑉) | |
18 | elfi 6972 | . . 3 ⊢ ((∩ 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (∩ 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥)) | |
19 | 16, 17, 18 | syl2anr 290 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → (∩ 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)∩ 𝐴 = ∩ 𝑥)) |
20 | 10, 19 | mpbird 167 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ≠ wne 2347 ∃wrex 2456 Vcvv 2739 ∩ cin 3130 ⊆ wss 3131 ∅c0 3424 𝒫 cpw 3577 ∩ cint 3846 ‘cfv 5218 Fincfn 6742 ficfi 6969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-er 6537 df-en 6743 df-fin 6745 df-fi 6970 |
This theorem is referenced by: ssfii 6975 |
Copyright terms: Public domain | W3C validator |