ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clsval GIF version

Theorem clsval 13696
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsval ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem clsval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5 𝑋 = 𝐽
21clsfval 13686 . . . 4 (𝐽 ∈ Top → (cls‘𝐽) = (𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥}))
32fveq1d 5519 . . 3 (𝐽 ∈ Top → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})‘𝑆))
43adantr 276 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})‘𝑆))
5 eqid 2177 . . 3 (𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥}) = (𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})
6 sseq1 3180 . . . . 5 (𝑦 = 𝑆 → (𝑦𝑥𝑆𝑥))
76rabbidv 2728 . . . 4 (𝑦 = 𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥} = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
87inteqd 3851 . . 3 (𝑦 = 𝑆 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥} = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
91topopn 13593 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
10 elpw2g 4158 . . . . 5 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
119, 10syl 14 . . . 4 (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1211biimpar 297 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
131topcld 13694 . . . . 5 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
14 sseq2 3181 . . . . . 6 (𝑥 = 𝑋 → (𝑆𝑥𝑆𝑋))
1514rspcev 2843 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆𝑥)
1613, 15sylan 283 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆𝑥)
17 intexrabim 4155 . . . 4 (∃𝑥 ∈ (Clsd‘𝐽)𝑆𝑥 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ∈ V)
1816, 17syl 14 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ∈ V)
195, 8, 12, 18fvmptd3 5611 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
204, 19eqtrd 2210 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wrex 2456  {crab 2459  Vcvv 2739  wss 3131  𝒫 cpw 3577   cuni 3811   cint 3846  cmpt 4066  cfv 5218  Topctop 13582  Clsdccld 13677  clsccl 13679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-top 13583  df-cld 13680  df-cls 13682
This theorem is referenced by:  cldcls  13699  clsss  13703  sscls  13705
  Copyright terms: Public domain W3C validator