ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clsval GIF version

Theorem clsval 12905
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsval ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem clsval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5 𝑋 = 𝐽
21clsfval 12895 . . . 4 (𝐽 ∈ Top → (cls‘𝐽) = (𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥}))
32fveq1d 5498 . . 3 (𝐽 ∈ Top → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})‘𝑆))
43adantr 274 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})‘𝑆))
5 eqid 2170 . . 3 (𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥}) = (𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})
6 sseq1 3170 . . . . 5 (𝑦 = 𝑆 → (𝑦𝑥𝑆𝑥))
76rabbidv 2719 . . . 4 (𝑦 = 𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥} = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
87inteqd 3836 . . 3 (𝑦 = 𝑆 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥} = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
91topopn 12800 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
10 elpw2g 4142 . . . . 5 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
119, 10syl 14 . . . 4 (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1211biimpar 295 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
131topcld 12903 . . . . 5 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
14 sseq2 3171 . . . . . 6 (𝑥 = 𝑋 → (𝑆𝑥𝑆𝑋))
1514rspcev 2834 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ 𝑆𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆𝑥)
1613, 15sylan 281 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∃𝑥 ∈ (Clsd‘𝐽)𝑆𝑥)
17 intexrabim 4139 . . . 4 (∃𝑥 ∈ (Clsd‘𝐽)𝑆𝑥 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ∈ V)
1816, 17syl 14 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} ∈ V)
195, 8, 12, 18fvmptd3 5589 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑦 ∈ 𝒫 𝑋 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑦𝑥})‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
204, 19eqtrd 2203 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wrex 2449  {crab 2452  Vcvv 2730  wss 3121  𝒫 cpw 3566   cuni 3796   cint 3831  cmpt 4050  cfv 5198  Topctop 12789  Clsdccld 12886  clsccl 12888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-top 12790  df-cld 12889  df-cls 12891
This theorem is referenced by:  cldcls  12908  clsss  12912  sscls  12914
  Copyright terms: Public domain W3C validator