| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isnumi | GIF version | ||
| Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| isnumi | ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4085 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝐵 ↔ 𝐴 ≈ 𝐵)) | |
| 2 | 1 | rspcev 2907 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → ∃𝑦 ∈ On 𝑦 ≈ 𝐵) |
| 3 | intexrabim 4236 | . . . 4 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐵 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V) |
| 5 | encv 6891 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 6 | 5 | simprd 114 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
| 7 | breq2 4086 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝐵)) | |
| 8 | 7 | rabbidv 2788 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
| 9 | 8 | inteqd 3927 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
| 10 | 9 | eleq1d 2298 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
| 11 | 10 | elrab3 2960 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
| 12 | 6, 11 | syl 14 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
| 13 | 12 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → (𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
| 14 | 4, 13 | mpbird 167 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V}) |
| 15 | df-card 7347 | . . 3 ⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥}) | |
| 16 | 15 | dmmpt 5223 | . 2 ⊢ dom card = {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} |
| 17 | 14, 16 | eleqtrrdi 2323 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 {crab 2512 Vcvv 2799 ∩ cint 3922 class class class wbr 4082 Oncon0 4453 dom cdm 4718 ≈ cen 6883 cardccrd 7345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-xp 4724 df-rel 4725 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-en 6886 df-card 7347 |
| This theorem is referenced by: finnum 7351 onenon 7352 |
| Copyright terms: Public domain | W3C validator |