![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isnumi | GIF version |
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
isnumi | ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4007 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝐵 ↔ 𝐴 ≈ 𝐵)) | |
2 | 1 | rspcev 2842 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → ∃𝑦 ∈ On 𝑦 ≈ 𝐵) |
3 | intexrabim 4154 | . . . 4 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐵 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V) |
5 | encv 6746 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
6 | 5 | simprd 114 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
7 | breq2 4008 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝐵)) | |
8 | 7 | rabbidv 2727 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
9 | 8 | inteqd 3850 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
10 | 9 | eleq1d 2246 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
11 | 10 | elrab3 2895 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
12 | 6, 11 | syl 14 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
13 | 12 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → (𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
14 | 4, 13 | mpbird 167 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V}) |
15 | df-card 7179 | . . 3 ⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥}) | |
16 | 15 | dmmpt 5125 | . 2 ⊢ dom card = {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} |
17 | 14, 16 | eleqtrrdi 2271 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 {crab 2459 Vcvv 2738 ∩ cint 3845 class class class wbr 4004 Oncon0 4364 dom cdm 4627 ≈ cen 6738 cardccrd 7178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-int 3846 df-br 4005 df-opab 4066 df-mpt 4067 df-xp 4633 df-rel 4634 df-cnv 4635 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-en 6741 df-card 7179 |
This theorem is referenced by: finnum 7182 onenon 7183 |
Copyright terms: Public domain | W3C validator |