![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isnumi | GIF version |
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
isnumi | ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4033 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝐵 ↔ 𝐴 ≈ 𝐵)) | |
2 | 1 | rspcev 2865 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → ∃𝑦 ∈ On 𝑦 ≈ 𝐵) |
3 | intexrabim 4183 | . . . 4 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐵 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V) |
5 | encv 6802 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
6 | 5 | simprd 114 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
7 | breq2 4034 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝐵)) | |
8 | 7 | rabbidv 2749 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
9 | 8 | inteqd 3876 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
10 | 9 | eleq1d 2262 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
11 | 10 | elrab3 2918 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
12 | 6, 11 | syl 14 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
13 | 12 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → (𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
14 | 4, 13 | mpbird 167 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V}) |
15 | df-card 7242 | . . 3 ⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥}) | |
16 | 15 | dmmpt 5162 | . 2 ⊢ dom card = {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} |
17 | 14, 16 | eleqtrrdi 2287 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 {crab 2476 Vcvv 2760 ∩ cint 3871 class class class wbr 4030 Oncon0 4395 dom cdm 4660 ≈ cen 6794 cardccrd 7241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-xp 4666 df-rel 4667 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-en 6797 df-card 7242 |
This theorem is referenced by: finnum 7245 onenon 7246 |
Copyright terms: Public domain | W3C validator |