Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isnumi | GIF version |
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
isnumi | ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3992 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝐵 ↔ 𝐴 ≈ 𝐵)) | |
2 | 1 | rspcev 2834 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → ∃𝑦 ∈ On 𝑦 ≈ 𝐵) |
3 | intexrabim 4139 | . . . 4 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐵 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V) |
5 | encv 6724 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
6 | 5 | simprd 113 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
7 | breq2 3993 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝐵)) | |
8 | 7 | rabbidv 2719 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
9 | 8 | inteqd 3836 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
10 | 9 | eleq1d 2239 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
11 | 10 | elrab3 2887 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
12 | 6, 11 | syl 14 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
13 | 12 | adantl 275 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → (𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
14 | 4, 13 | mpbird 166 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V}) |
15 | df-card 7157 | . . 3 ⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥}) | |
16 | 15 | dmmpt 5106 | . 2 ⊢ dom card = {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} |
17 | 14, 16 | eleqtrrdi 2264 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 {crab 2452 Vcvv 2730 ∩ cint 3831 class class class wbr 3989 Oncon0 4348 dom cdm 4611 ≈ cen 6716 cardccrd 7156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-en 6719 df-card 7157 |
This theorem is referenced by: finnum 7160 onenon 7161 |
Copyright terms: Public domain | W3C validator |