ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnumi GIF version

Theorem isnumi 7181
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
isnumi ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)

Proof of Theorem isnumi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4007 . . . . 5 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
21rspcev 2842 . . . 4 ((𝐴 ∈ On ∧ 𝐴𝐵) → ∃𝑦 ∈ On 𝑦𝐵)
3 intexrabim 4154 . . . 4 (∃𝑦 ∈ On 𝑦𝐵 {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V)
42, 3syl 14 . . 3 ((𝐴 ∈ On ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V)
5 encv 6746 . . . . . 6 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
65simprd 114 . . . . 5 (𝐴𝐵𝐵 ∈ V)
7 breq2 4008 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑦𝑥𝑦𝐵))
87rabbidv 2727 . . . . . . . 8 (𝑥 = 𝐵 → {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐵})
98inteqd 3850 . . . . . . 7 (𝑥 = 𝐵 {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐵})
109eleq1d 2246 . . . . . 6 (𝑥 = 𝐵 → ( {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
1110elrab3 2895 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
126, 11syl 14 . . . 4 (𝐴𝐵 → (𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
1312adantl 277 . . 3 ((𝐴 ∈ On ∧ 𝐴𝐵) → (𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
144, 13mpbird 167 . 2 ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V})
15 df-card 7179 . . 3 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
1615dmmpt 5125 . 2 dom card = {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
1714, 16eleqtrrdi 2271 1 ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wrex 2456  {crab 2459  Vcvv 2738   cint 3845   class class class wbr 4004  Oncon0 4364  dom cdm 4627  cen 6738  cardccrd 7178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-xp 4633  df-rel 4634  df-cnv 4635  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-en 6741  df-card 7179
This theorem is referenced by:  finnum  7182  onenon  7183
  Copyright terms: Public domain W3C validator