ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnumi GIF version

Theorem isnumi 7055
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
isnumi ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)

Proof of Theorem isnumi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3940 . . . . 5 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
21rspcev 2793 . . . 4 ((𝐴 ∈ On ∧ 𝐴𝐵) → ∃𝑦 ∈ On 𝑦𝐵)
3 intexrabim 4086 . . . 4 (∃𝑦 ∈ On 𝑦𝐵 {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V)
42, 3syl 14 . . 3 ((𝐴 ∈ On ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V)
5 encv 6648 . . . . . 6 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
65simprd 113 . . . . 5 (𝐴𝐵𝐵 ∈ V)
7 breq2 3941 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑦𝑥𝑦𝐵))
87rabbidv 2678 . . . . . . . 8 (𝑥 = 𝐵 → {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐵})
98inteqd 3784 . . . . . . 7 (𝑥 = 𝐵 {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐵})
109eleq1d 2209 . . . . . 6 (𝑥 = 𝐵 → ( {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
1110elrab3 2845 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
126, 11syl 14 . . . 4 (𝐴𝐵 → (𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
1312adantl 275 . . 3 ((𝐴 ∈ On ∧ 𝐴𝐵) → (𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
144, 13mpbird 166 . 2 ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V})
15 df-card 7053 . . 3 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
1615dmmpt 5042 . 2 dom card = {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
1714, 16eleqtrrdi 2234 1 ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wrex 2418  {crab 2421  Vcvv 2689   cint 3779   class class class wbr 3937  Oncon0 4293  dom cdm 4547  cen 6640  cardccrd 7052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-xp 4553  df-rel 4554  df-cnv 4555  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-en 6643  df-card 7053
This theorem is referenced by:  finnum  7056  onenon  7057
  Copyright terms: Public domain W3C validator