ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspval GIF version

Theorem lspval 13946
Description: The span of a set of vectors (in a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspval ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡𝑆𝑈𝑡})
Distinct variable groups:   𝑡,𝑆   𝑡,𝑈   𝑡,𝑉
Allowed substitution hints:   𝑁(𝑡)   𝑊(𝑡)

Proof of Theorem lspval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lspval.v . . . . 5 𝑉 = (Base‘𝑊)
2 lspval.s . . . . 5 𝑆 = (LSubSp‘𝑊)
3 lspval.n . . . . 5 𝑁 = (LSpan‘𝑊)
41, 2, 3lspfval 13944 . . . 4 (𝑊 ∈ LMod → 𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
54fveq1d 5560 . . 3 (𝑊 ∈ LMod → (𝑁𝑈) = ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈))
65adantr 276 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈))
7 eqid 2196 . . 3 (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})
8 sseq1 3206 . . . . 5 (𝑠 = 𝑈 → (𝑠𝑡𝑈𝑡))
98rabbidv 2752 . . . 4 (𝑠 = 𝑈 → {𝑡𝑆𝑠𝑡} = {𝑡𝑆𝑈𝑡})
109inteqd 3879 . . 3 (𝑠 = 𝑈 {𝑡𝑆𝑠𝑡} = {𝑡𝑆𝑈𝑡})
11 simpr 110 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈𝑉)
12 basfn 12736 . . . . . . 7 Base Fn V
13 elex 2774 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ V)
1413adantr 276 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑊 ∈ V)
15 funfvex 5575 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
1615funfni 5358 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
1712, 14, 16sylancr 414 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (Base‘𝑊) ∈ V)
181, 17eqeltrid 2283 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑉 ∈ V)
19 elpw2g 4189 . . . . 5 (𝑉 ∈ V → (𝑈 ∈ 𝒫 𝑉𝑈𝑉))
2018, 19syl 14 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑈 ∈ 𝒫 𝑉𝑈𝑉))
2111, 20mpbird 167 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ∈ 𝒫 𝑉)
221, 2lss1 13918 . . . . 5 (𝑊 ∈ LMod → 𝑉𝑆)
23 sseq2 3207 . . . . . 6 (𝑡 = 𝑉 → (𝑈𝑡𝑈𝑉))
2423rspcev 2868 . . . . 5 ((𝑉𝑆𝑈𝑉) → ∃𝑡𝑆 𝑈𝑡)
2522, 24sylan 283 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → ∃𝑡𝑆 𝑈𝑡)
26 intexrabim 4186 . . . 4 (∃𝑡𝑆 𝑈𝑡 {𝑡𝑆𝑈𝑡} ∈ V)
2725, 26syl 14 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → {𝑡𝑆𝑈𝑡} ∈ V)
287, 10, 21, 27fvmptd3 5655 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈) = {𝑡𝑆𝑈𝑡})
296, 28eqtrd 2229 1 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡𝑆𝑈𝑡})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wrex 2476  {crab 2479  Vcvv 2763  wss 3157  𝒫 cpw 3605   cint 3874  cmpt 4094   Fn wfn 5253  cfv 5258  Basecbs 12678  LModclmod 13843  LSubSpclss 13908  LSpanclspn 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-lmod 13845  df-lssm 13909  df-lsp 13943
This theorem is referenced by:  lspid  13953  lspss  13955  lspssid  13956
  Copyright terms: Public domain W3C validator