![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspval | GIF version |
Description: The span of a set of vectors (in a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspval | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspval.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspval.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lspval.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 1, 2, 3 | lspfval 13887 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
5 | 4 | fveq1d 5557 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑁‘𝑈) = ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})‘𝑈)) |
6 | 5 | adantr 276 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})‘𝑈)) |
7 | eqid 2193 | . . 3 ⊢ (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) | |
8 | sseq1 3203 | . . . . 5 ⊢ (𝑠 = 𝑈 → (𝑠 ⊆ 𝑡 ↔ 𝑈 ⊆ 𝑡)) | |
9 | 8 | rabbidv 2749 | . . . 4 ⊢ (𝑠 = 𝑈 → {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
10 | 9 | inteqd 3876 | . . 3 ⊢ (𝑠 = 𝑈 → ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
11 | simpr 110 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ 𝑉) | |
12 | basfn 12679 | . . . . . . 7 ⊢ Base Fn V | |
13 | elex 2771 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ V) | |
14 | 13 | adantr 276 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑊 ∈ V) |
15 | funfvex 5572 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V) | |
16 | 15 | funfni 5355 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V) |
17 | 12, 14, 16 | sylancr 414 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (Base‘𝑊) ∈ V) |
18 | 1, 17 | eqeltrid 2280 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑉 ∈ V) |
19 | elpw2g 4186 | . . . . 5 ⊢ (𝑉 ∈ V → (𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉)) | |
20 | 18, 19 | syl 14 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉)) |
21 | 11, 20 | mpbird 167 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ∈ 𝒫 𝑉) |
22 | 1, 2 | lss1 13861 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
23 | sseq2 3204 | . . . . . 6 ⊢ (𝑡 = 𝑉 → (𝑈 ⊆ 𝑡 ↔ 𝑈 ⊆ 𝑉)) | |
24 | 23 | rspcev 2865 | . . . . 5 ⊢ ((𝑉 ∈ 𝑆 ∧ 𝑈 ⊆ 𝑉) → ∃𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡) |
25 | 22, 24 | sylan 283 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → ∃𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡) |
26 | intexrabim 4183 | . . . 4 ⊢ (∃𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡 → ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡} ∈ V) | |
27 | 25, 26 | syl 14 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡} ∈ V) |
28 | 7, 10, 21, 27 | fvmptd3 5652 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
29 | 6, 28 | eqtrd 2226 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 {crab 2476 Vcvv 2760 ⊆ wss 3154 𝒫 cpw 3602 ∩ cint 3871 ↦ cmpt 4091 Fn wfn 5250 ‘cfv 5255 Basecbs 12621 LModclmod 13786 LSubSpclss 13851 LSpanclspn 13885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-lmod 13788 df-lssm 13852 df-lsp 13886 |
This theorem is referenced by: lspid 13896 lspss 13898 lspssid 13899 |
Copyright terms: Public domain | W3C validator |