| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lspval | GIF version | ||
| Description: The span of a set of vectors (in a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspval | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lspval.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | lspval.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | 1, 2, 3 | lspfval 14360 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| 5 | 4 | fveq1d 5631 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑁‘𝑈) = ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})‘𝑈)) |
| 6 | 5 | adantr 276 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})‘𝑈)) |
| 7 | eqid 2229 | . . 3 ⊢ (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) | |
| 8 | sseq1 3247 | . . . . 5 ⊢ (𝑠 = 𝑈 → (𝑠 ⊆ 𝑡 ↔ 𝑈 ⊆ 𝑡)) | |
| 9 | 8 | rabbidv 2788 | . . . 4 ⊢ (𝑠 = 𝑈 → {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
| 10 | 9 | inteqd 3928 | . . 3 ⊢ (𝑠 = 𝑈 → ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
| 11 | simpr 110 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ 𝑉) | |
| 12 | basfn 13099 | . . . . . . 7 ⊢ Base Fn V | |
| 13 | elex 2811 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ V) | |
| 14 | 13 | adantr 276 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑊 ∈ V) |
| 15 | funfvex 5646 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V) | |
| 16 | 15 | funfni 5423 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V) |
| 17 | 12, 14, 16 | sylancr 414 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (Base‘𝑊) ∈ V) |
| 18 | 1, 17 | eqeltrid 2316 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑉 ∈ V) |
| 19 | elpw2g 4240 | . . . . 5 ⊢ (𝑉 ∈ V → (𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉)) | |
| 20 | 18, 19 | syl 14 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉)) |
| 21 | 11, 20 | mpbird 167 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ∈ 𝒫 𝑉) |
| 22 | 1, 2 | lss1 14334 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
| 23 | sseq2 3248 | . . . . . 6 ⊢ (𝑡 = 𝑉 → (𝑈 ⊆ 𝑡 ↔ 𝑈 ⊆ 𝑉)) | |
| 24 | 23 | rspcev 2907 | . . . . 5 ⊢ ((𝑉 ∈ 𝑆 ∧ 𝑈 ⊆ 𝑉) → ∃𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡) |
| 25 | 22, 24 | sylan 283 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → ∃𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡) |
| 26 | intexrabim 4237 | . . . 4 ⊢ (∃𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡 → ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡} ∈ V) | |
| 27 | 25, 26 | syl 14 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡} ∈ V) |
| 28 | 7, 10, 21, 27 | fvmptd3 5730 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
| 29 | 6, 28 | eqtrd 2262 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 {crab 2512 Vcvv 2799 ⊆ wss 3197 𝒫 cpw 3649 ∩ cint 3923 ↦ cmpt 4145 Fn wfn 5313 ‘cfv 5318 Basecbs 13040 LModclmod 14259 LSubSpclss 14324 LSpanclspn 14358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-lmod 14261 df-lssm 14325 df-lsp 14359 |
| This theorem is referenced by: lspid 14369 lspss 14371 lspssid 14372 |
| Copyright terms: Public domain | W3C validator |