| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lspval | GIF version | ||
| Description: The span of a set of vectors (in a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspval | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lspval.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | lspval.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | 1, 2, 3 | lspfval 13944 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| 5 | 4 | fveq1d 5560 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑁‘𝑈) = ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})‘𝑈)) |
| 6 | 5 | adantr 276 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})‘𝑈)) |
| 7 | eqid 2196 | . . 3 ⊢ (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) | |
| 8 | sseq1 3206 | . . . . 5 ⊢ (𝑠 = 𝑈 → (𝑠 ⊆ 𝑡 ↔ 𝑈 ⊆ 𝑡)) | |
| 9 | 8 | rabbidv 2752 | . . . 4 ⊢ (𝑠 = 𝑈 → {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
| 10 | 9 | inteqd 3879 | . . 3 ⊢ (𝑠 = 𝑈 → ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
| 11 | simpr 110 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ 𝑉) | |
| 12 | basfn 12736 | . . . . . . 7 ⊢ Base Fn V | |
| 13 | elex 2774 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ V) | |
| 14 | 13 | adantr 276 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑊 ∈ V) |
| 15 | funfvex 5575 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V) | |
| 16 | 15 | funfni 5358 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V) |
| 17 | 12, 14, 16 | sylancr 414 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (Base‘𝑊) ∈ V) |
| 18 | 1, 17 | eqeltrid 2283 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑉 ∈ V) |
| 19 | elpw2g 4189 | . . . . 5 ⊢ (𝑉 ∈ V → (𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉)) | |
| 20 | 18, 19 | syl 14 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉)) |
| 21 | 11, 20 | mpbird 167 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ∈ 𝒫 𝑉) |
| 22 | 1, 2 | lss1 13918 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
| 23 | sseq2 3207 | . . . . . 6 ⊢ (𝑡 = 𝑉 → (𝑈 ⊆ 𝑡 ↔ 𝑈 ⊆ 𝑉)) | |
| 24 | 23 | rspcev 2868 | . . . . 5 ⊢ ((𝑉 ∈ 𝑆 ∧ 𝑈 ⊆ 𝑉) → ∃𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡) |
| 25 | 22, 24 | sylan 283 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → ∃𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡) |
| 26 | intexrabim 4186 | . . . 4 ⊢ (∃𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡 → ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡} ∈ V) | |
| 27 | 25, 26 | syl 14 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡} ∈ V) |
| 28 | 7, 10, 21, 27 | fvmptd3 5655 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → ((𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
| 29 | 6, 28 | eqtrd 2229 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 {crab 2479 Vcvv 2763 ⊆ wss 3157 𝒫 cpw 3605 ∩ cint 3874 ↦ cmpt 4094 Fn wfn 5253 ‘cfv 5258 Basecbs 12678 LModclmod 13843 LSubSpclss 13908 LSpanclspn 13942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-lmod 13845 df-lssm 13909 df-lsp 13943 |
| This theorem is referenced by: lspid 13953 lspss 13955 lspssid 13956 |
| Copyright terms: Public domain | W3C validator |