Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cardval3ex | GIF version |
Description: The value of (card‘𝐴). (Contributed by Jim Kingdon, 30-Aug-2021.) |
Ref | Expression |
---|---|
cardval3ex | ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 6724 | . . . 4 ⊢ (𝑥 ≈ 𝐴 → (𝑥 ∈ V ∧ 𝐴 ∈ V)) | |
2 | 1 | simprd 113 | . . 3 ⊢ (𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
3 | 2 | rexlimivw 2583 | . 2 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
4 | breq1 3992 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴)) | |
5 | 4 | cbvrexv 2697 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
6 | intexrabim 4139 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) | |
7 | 5, 6 | sylbir 134 | . 2 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) |
8 | breq2 3993 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑦 ≈ 𝑧 ↔ 𝑦 ≈ 𝐴)) | |
9 | 8 | rabbidv 2719 | . . . 4 ⊢ (𝑧 = 𝐴 → {𝑦 ∈ On ∣ 𝑦 ≈ 𝑧} = {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
10 | 9 | inteqd 3836 | . . 3 ⊢ (𝑧 = 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑧} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
11 | df-card 7157 | . . 3 ⊢ card = (𝑧 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑧}) | |
12 | 10, 11 | fvmptg 5572 | . 2 ⊢ ((𝐴 ∈ V ∧ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
13 | 3, 7, 12 | syl2anc 409 | 1 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 {crab 2452 Vcvv 2730 ∩ cint 3831 class class class wbr 3989 Oncon0 4348 ‘cfv 5198 ≈ cen 6716 cardccrd 7156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-en 6719 df-card 7157 |
This theorem is referenced by: oncardval 7163 carden2bex 7166 |
Copyright terms: Public domain | W3C validator |