| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cardval3ex | GIF version | ||
| Description: The value of (card‘𝐴). (Contributed by Jim Kingdon, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| cardval3ex | ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 6833 | . . . 4 ⊢ (𝑥 ≈ 𝐴 → (𝑥 ∈ V ∧ 𝐴 ∈ V)) | |
| 2 | 1 | simprd 114 | . . 3 ⊢ (𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
| 3 | 2 | rexlimivw 2619 | . 2 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
| 4 | breq1 4047 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴)) | |
| 5 | 4 | cbvrexv 2739 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
| 6 | intexrabim 4197 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) | |
| 7 | 5, 6 | sylbir 135 | . 2 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) |
| 8 | breq2 4048 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑦 ≈ 𝑧 ↔ 𝑦 ≈ 𝐴)) | |
| 9 | 8 | rabbidv 2761 | . . . 4 ⊢ (𝑧 = 𝐴 → {𝑦 ∈ On ∣ 𝑦 ≈ 𝑧} = {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 10 | 9 | inteqd 3890 | . . 3 ⊢ (𝑧 = 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑧} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 11 | df-card 7286 | . . 3 ⊢ card = (𝑧 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑧}) | |
| 12 | 10, 11 | fvmptg 5655 | . 2 ⊢ ((𝐴 ∈ V ∧ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 13 | 3, 7, 12 | syl2anc 411 | 1 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ∃wrex 2485 {crab 2488 Vcvv 2772 ∩ cint 3885 class class class wbr 4044 Oncon0 4410 ‘cfv 5271 ≈ cen 6825 cardccrd 7284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-en 6828 df-card 7286 |
| This theorem is referenced by: oncardval 7293 carden2bex 7297 |
| Copyright terms: Public domain | W3C validator |