| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cardval3ex | GIF version | ||
| Description: The value of (card‘𝐴). (Contributed by Jim Kingdon, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| cardval3ex | ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 6891 | . . . 4 ⊢ (𝑥 ≈ 𝐴 → (𝑥 ∈ V ∧ 𝐴 ∈ V)) | |
| 2 | 1 | simprd 114 | . . 3 ⊢ (𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
| 3 | 2 | rexlimivw 2644 | . 2 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
| 4 | breq1 4085 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴)) | |
| 5 | 4 | cbvrexv 2766 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
| 6 | intexrabim 4236 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) | |
| 7 | 5, 6 | sylbir 135 | . 2 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) |
| 8 | breq2 4086 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑦 ≈ 𝑧 ↔ 𝑦 ≈ 𝐴)) | |
| 9 | 8 | rabbidv 2788 | . . . 4 ⊢ (𝑧 = 𝐴 → {𝑦 ∈ On ∣ 𝑦 ≈ 𝑧} = {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 10 | 9 | inteqd 3927 | . . 3 ⊢ (𝑧 = 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑧} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 11 | df-card 7347 | . . 3 ⊢ card = (𝑧 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑧}) | |
| 12 | 10, 11 | fvmptg 5709 | . 2 ⊢ ((𝐴 ∈ V ∧ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 13 | 3, 7, 12 | syl2anc 411 | 1 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 {crab 2512 Vcvv 2799 ∩ cint 3922 class class class wbr 4082 Oncon0 4453 ‘cfv 5317 ≈ cen 6883 cardccrd 7345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-en 6886 df-card 7347 |
| This theorem is referenced by: oncardval 7354 carden2bex 7358 |
| Copyright terms: Public domain | W3C validator |