ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cardval3ex GIF version

Theorem cardval3ex 7313
Description: The value of (card‘𝐴). (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
cardval3ex (∃𝑥 ∈ On 𝑥𝐴 → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cardval3ex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 encv 6851 . . . 4 (𝑥𝐴 → (𝑥 ∈ V ∧ 𝐴 ∈ V))
21simprd 114 . . 3 (𝑥𝐴𝐴 ∈ V)
32rexlimivw 2620 . 2 (∃𝑥 ∈ On 𝑥𝐴𝐴 ∈ V)
4 breq1 4057 . . . 4 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
54cbvrexv 2740 . . 3 (∃𝑦 ∈ On 𝑦𝐴 ↔ ∃𝑥 ∈ On 𝑥𝐴)
6 intexrabim 4208 . . 3 (∃𝑦 ∈ On 𝑦𝐴 {𝑦 ∈ On ∣ 𝑦𝐴} ∈ V)
75, 6sylbir 135 . 2 (∃𝑥 ∈ On 𝑥𝐴 {𝑦 ∈ On ∣ 𝑦𝐴} ∈ V)
8 breq2 4058 . . . . 5 (𝑧 = 𝐴 → (𝑦𝑧𝑦𝐴))
98rabbidv 2762 . . . 4 (𝑧 = 𝐴 → {𝑦 ∈ On ∣ 𝑦𝑧} = {𝑦 ∈ On ∣ 𝑦𝐴})
109inteqd 3899 . . 3 (𝑧 = 𝐴 {𝑦 ∈ On ∣ 𝑦𝑧} = {𝑦 ∈ On ∣ 𝑦𝐴})
11 df-card 7307 . . 3 card = (𝑧 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑧})
1210, 11fvmptg 5673 . 2 ((𝐴 ∈ V ∧ {𝑦 ∈ On ∣ 𝑦𝐴} ∈ V) → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
133, 7, 12syl2anc 411 1 (∃𝑥 ∈ On 𝑥𝐴 → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  wrex 2486  {crab 2489  Vcvv 2773   cint 3894   class class class wbr 4054  Oncon0 4423  cfv 5285  cen 6843  cardccrd 7305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-en 6846  df-card 7307
This theorem is referenced by:  oncardval  7314  carden2bex  7318
  Copyright terms: Public domain W3C validator