![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cardval3ex | GIF version |
Description: The value of (cardβπ΄). (Contributed by Jim Kingdon, 30-Aug-2021.) |
Ref | Expression |
---|---|
cardval3ex | β’ (βπ₯ β On π₯ β π΄ β (cardβπ΄) = β© {π¦ β On β£ π¦ β π΄}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 6749 | . . . 4 β’ (π₯ β π΄ β (π₯ β V β§ π΄ β V)) | |
2 | 1 | simprd 114 | . . 3 β’ (π₯ β π΄ β π΄ β V) |
3 | 2 | rexlimivw 2590 | . 2 β’ (βπ₯ β On π₯ β π΄ β π΄ β V) |
4 | breq1 4008 | . . . 4 β’ (π¦ = π₯ β (π¦ β π΄ β π₯ β π΄)) | |
5 | 4 | cbvrexv 2706 | . . 3 β’ (βπ¦ β On π¦ β π΄ β βπ₯ β On π₯ β π΄) |
6 | intexrabim 4155 | . . 3 β’ (βπ¦ β On π¦ β π΄ β β© {π¦ β On β£ π¦ β π΄} β V) | |
7 | 5, 6 | sylbir 135 | . 2 β’ (βπ₯ β On π₯ β π΄ β β© {π¦ β On β£ π¦ β π΄} β V) |
8 | breq2 4009 | . . . . 5 β’ (π§ = π΄ β (π¦ β π§ β π¦ β π΄)) | |
9 | 8 | rabbidv 2728 | . . . 4 β’ (π§ = π΄ β {π¦ β On β£ π¦ β π§} = {π¦ β On β£ π¦ β π΄}) |
10 | 9 | inteqd 3851 | . . 3 β’ (π§ = π΄ β β© {π¦ β On β£ π¦ β π§} = β© {π¦ β On β£ π¦ β π΄}) |
11 | df-card 7182 | . . 3 β’ card = (π§ β V β¦ β© {π¦ β On β£ π¦ β π§}) | |
12 | 10, 11 | fvmptg 5595 | . 2 β’ ((π΄ β V β§ β© {π¦ β On β£ π¦ β π΄} β V) β (cardβπ΄) = β© {π¦ β On β£ π¦ β π΄}) |
13 | 3, 7, 12 | syl2anc 411 | 1 β’ (βπ₯ β On π₯ β π΄ β (cardβπ΄) = β© {π¦ β On β£ π¦ β π΄}) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 βwrex 2456 {crab 2459 Vcvv 2739 β© cint 3846 class class class wbr 4005 Oncon0 4365 βcfv 5218 β cen 6741 cardccrd 7181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-en 6744 df-card 7182 |
This theorem is referenced by: oncardval 7188 carden2bex 7191 |
Copyright terms: Public domain | W3C validator |