ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cardval3ex GIF version

Theorem cardval3ex 7187
Description: The value of (cardβ€˜π΄). (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
cardval3ex (βˆƒπ‘₯ ∈ On π‘₯ β‰ˆ 𝐴 β†’ (cardβ€˜π΄) = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴})
Distinct variable group:   π‘₯,𝐴,𝑦

Proof of Theorem cardval3ex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 encv 6749 . . . 4 (π‘₯ β‰ˆ 𝐴 β†’ (π‘₯ ∈ V ∧ 𝐴 ∈ V))
21simprd 114 . . 3 (π‘₯ β‰ˆ 𝐴 β†’ 𝐴 ∈ V)
32rexlimivw 2590 . 2 (βˆƒπ‘₯ ∈ On π‘₯ β‰ˆ 𝐴 β†’ 𝐴 ∈ V)
4 breq1 4008 . . . 4 (𝑦 = π‘₯ β†’ (𝑦 β‰ˆ 𝐴 ↔ π‘₯ β‰ˆ 𝐴))
54cbvrexv 2706 . . 3 (βˆƒπ‘¦ ∈ On 𝑦 β‰ˆ 𝐴 ↔ βˆƒπ‘₯ ∈ On π‘₯ β‰ˆ 𝐴)
6 intexrabim 4155 . . 3 (βˆƒπ‘¦ ∈ On 𝑦 β‰ˆ 𝐴 β†’ ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴} ∈ V)
75, 6sylbir 135 . 2 (βˆƒπ‘₯ ∈ On π‘₯ β‰ˆ 𝐴 β†’ ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴} ∈ V)
8 breq2 4009 . . . . 5 (𝑧 = 𝐴 β†’ (𝑦 β‰ˆ 𝑧 ↔ 𝑦 β‰ˆ 𝐴))
98rabbidv 2728 . . . 4 (𝑧 = 𝐴 β†’ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝑧} = {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴})
109inteqd 3851 . . 3 (𝑧 = 𝐴 β†’ ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝑧} = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴})
11 df-card 7182 . . 3 card = (𝑧 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝑧})
1210, 11fvmptg 5595 . 2 ((𝐴 ∈ V ∧ ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴} ∈ V) β†’ (cardβ€˜π΄) = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴})
133, 7, 12syl2anc 411 1 (βˆƒπ‘₯ ∈ On π‘₯ β‰ˆ 𝐴 β†’ (cardβ€˜π΄) = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴})
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   = wceq 1353   ∈ wcel 2148  βˆƒwrex 2456  {crab 2459  Vcvv 2739  βˆ© cint 3846   class class class wbr 4005  Oncon0 4365  β€˜cfv 5218   β‰ˆ cen 6741  cardccrd 7181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-en 6744  df-card 7182
This theorem is referenced by:  oncardval  7188  carden2bex  7191
  Copyright terms: Public domain W3C validator