| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cardval3ex | GIF version | ||
| Description: The value of (card‘𝐴). (Contributed by Jim Kingdon, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| cardval3ex | ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 6814 | . . . 4 ⊢ (𝑥 ≈ 𝐴 → (𝑥 ∈ V ∧ 𝐴 ∈ V)) | |
| 2 | 1 | simprd 114 | . . 3 ⊢ (𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
| 3 | 2 | rexlimivw 2610 | . 2 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
| 4 | breq1 4037 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴)) | |
| 5 | 4 | cbvrexv 2730 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
| 6 | intexrabim 4187 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) | |
| 7 | 5, 6 | sylbir 135 | . 2 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) |
| 8 | breq2 4038 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑦 ≈ 𝑧 ↔ 𝑦 ≈ 𝐴)) | |
| 9 | 8 | rabbidv 2752 | . . . 4 ⊢ (𝑧 = 𝐴 → {𝑦 ∈ On ∣ 𝑦 ≈ 𝑧} = {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 10 | 9 | inteqd 3880 | . . 3 ⊢ (𝑧 = 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑧} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 11 | df-card 7257 | . . 3 ⊢ card = (𝑧 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑧}) | |
| 12 | 10, 11 | fvmptg 5640 | . 2 ⊢ ((𝐴 ∈ V ∧ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 13 | 3, 7, 12 | syl2anc 411 | 1 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 {crab 2479 Vcvv 2763 ∩ cint 3875 class class class wbr 4034 Oncon0 4399 ‘cfv 5259 ≈ cen 6806 cardccrd 7255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-en 6809 df-card 7257 |
| This theorem is referenced by: oncardval 7264 carden2bex 7268 |
| Copyright terms: Public domain | W3C validator |