| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cardval3ex | GIF version | ||
| Description: The value of (card‘𝐴). (Contributed by Jim Kingdon, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| cardval3ex | ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 6832 | . . . 4 ⊢ (𝑥 ≈ 𝐴 → (𝑥 ∈ V ∧ 𝐴 ∈ V)) | |
| 2 | 1 | simprd 114 | . . 3 ⊢ (𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
| 3 | 2 | rexlimivw 2618 | . 2 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
| 4 | breq1 4046 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴)) | |
| 5 | 4 | cbvrexv 2738 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
| 6 | intexrabim 4196 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) | |
| 7 | 5, 6 | sylbir 135 | . 2 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) |
| 8 | breq2 4047 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑦 ≈ 𝑧 ↔ 𝑦 ≈ 𝐴)) | |
| 9 | 8 | rabbidv 2760 | . . . 4 ⊢ (𝑧 = 𝐴 → {𝑦 ∈ On ∣ 𝑦 ≈ 𝑧} = {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 10 | 9 | inteqd 3889 | . . 3 ⊢ (𝑧 = 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑧} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 11 | df-card 7285 | . . 3 ⊢ card = (𝑧 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑧}) | |
| 12 | 10, 11 | fvmptg 5654 | . 2 ⊢ ((𝐴 ∈ V ∧ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 13 | 3, 7, 12 | syl2anc 411 | 1 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ∃wrex 2484 {crab 2487 Vcvv 2771 ∩ cint 3884 class class class wbr 4043 Oncon0 4409 ‘cfv 5270 ≈ cen 6824 cardccrd 7283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-en 6827 df-card 7285 |
| This theorem is referenced by: oncardval 7292 carden2bex 7296 |
| Copyright terms: Public domain | W3C validator |