![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ringabl | GIF version |
Description: A ring is an Abelian group. (Contributed by NM, 26-Aug-2011.) |
Ref | Expression |
---|---|
ringabl | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2190 | . 2 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅)) | |
2 | eqidd 2190 | . 2 ⊢ (𝑅 ∈ Ring → (+g‘𝑅) = (+g‘𝑅)) | |
3 | ringgrp 13348 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
4 | eqid 2189 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | eqid 2189 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
6 | 4, 5 | ringcom 13378 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)𝑦) = (𝑦(+g‘𝑅)𝑥)) |
7 | 1, 2, 3, 6 | isabld 13231 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 ‘cfv 5232 Basecbs 12507 +gcplusg 12582 Abelcabl 13217 Ringcrg 13343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7927 ax-resscn 7928 ax-1cn 7929 ax-1re 7930 ax-icn 7931 ax-addcl 7932 ax-addrcl 7933 ax-mulcl 7934 ax-addcom 7936 ax-addass 7938 ax-i2m1 7941 ax-0lt1 7942 ax-0id 7944 ax-rnegex 7945 ax-pre-ltirr 7948 ax-pre-ltadd 7952 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-pnf 8019 df-mnf 8020 df-ltxr 8022 df-inn 8945 df-2 9003 df-3 9004 df-ndx 12510 df-slot 12511 df-base 12513 df-sets 12514 df-plusg 12595 df-mulr 12596 df-0g 12756 df-mgm 12825 df-sgrp 12858 df-mnd 12871 df-grp 12941 df-minusg 12942 df-cmn 13218 df-abl 13219 df-mgp 13268 df-ur 13307 df-ring 13345 |
This theorem is referenced by: ringcmn 13380 ringabld 13381 ringrng 13383 qus1 13834 zringabl 13886 |
Copyright terms: Public domain | W3C validator |