![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpmndd | GIF version |
Description: A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
Ref | Expression |
---|---|
grpmndd.1 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grpmnd 12913 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2158 Mndcmnd 12839 Grpcgrp 12906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-un 3145 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-iota 5190 df-fv 5236 df-ov 5891 df-grp 12909 |
This theorem is referenced by: hashfingrpnn 12941 ghmgrp 13021 mulgdirlem 13054 ghmmhm 13148 isabld 13193 ringmnd 13315 unitabl 13422 unitsubm 13424 lmodvsmmulgdi 13569 |
Copyright terms: Public domain | W3C validator |