![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpmndd | GIF version |
Description: A group is a monoid. (Contributed by SN, 1-Jun-2024.) |
Ref | Expression |
---|---|
grpmndd.1 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grpmnd 13082 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 Mndcmnd 13000 Grpcgrp 13075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-grp 13078 |
This theorem is referenced by: grpmgmd 13101 hashfingrpnn 13111 ghmgrp 13191 mulgdirlem 13226 ghmmhm 13326 isabld 13372 ringmnd 13505 unitabl 13616 unitsubm 13618 lmodvsmmulgdi 13822 |
Copyright terms: Public domain | W3C validator |