| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funcnv2 | GIF version | ||
| Description: A simpler equivalence for single-rooted (see funcnv 5320). (Contributed by NM, 9-Aug-2004.) |
| Ref | Expression |
|---|---|
| funcnv2 | ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5048 | . . 3 ⊢ Rel ◡𝐴 | |
| 2 | dffun6 5273 | . . 3 ⊢ (Fun ◡𝐴 ↔ (Rel ◡𝐴 ∧ ∀𝑦∃*𝑥 𝑦◡𝐴𝑥)) | |
| 3 | 1, 2 | mpbiran 942 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑦◡𝐴𝑥) |
| 4 | vex 2766 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 5 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 6 | 4, 5 | brcnv 4850 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 7 | 6 | mobii 2082 | . . 3 ⊢ (∃*𝑥 𝑦◡𝐴𝑥 ↔ ∃*𝑥 𝑥𝐴𝑦) |
| 8 | 7 | albii 1484 | . 2 ⊢ (∀𝑦∃*𝑥 𝑦◡𝐴𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
| 9 | 3, 8 | bitri 184 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1362 ∃*wmo 2046 class class class wbr 4034 ◡ccnv 4663 Rel wrel 4669 Fun wfun 5253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-fun 5261 |
| This theorem is referenced by: funcnv 5320 fun2cnv 5323 fun11 5326 dff12 5463 1stconst 6280 2ndconst 6281 |
| Copyright terms: Public domain | W3C validator |