| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funcnv2 | GIF version | ||
| Description: A simpler equivalence for single-rooted (see funcnv 5340). (Contributed by NM, 9-Aug-2004.) |
| Ref | Expression |
|---|---|
| funcnv2 | ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5065 | . . 3 ⊢ Rel ◡𝐴 | |
| 2 | dffun6 5290 | . . 3 ⊢ (Fun ◡𝐴 ↔ (Rel ◡𝐴 ∧ ∀𝑦∃*𝑥 𝑦◡𝐴𝑥)) | |
| 3 | 1, 2 | mpbiran 943 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑦◡𝐴𝑥) |
| 4 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 5 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 6 | 4, 5 | brcnv 4865 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 7 | 6 | mobii 2092 | . . 3 ⊢ (∃*𝑥 𝑦◡𝐴𝑥 ↔ ∃*𝑥 𝑥𝐴𝑦) |
| 8 | 7 | albii 1494 | . 2 ⊢ (∀𝑦∃*𝑥 𝑦◡𝐴𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
| 9 | 3, 8 | bitri 184 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 ∃*wmo 2056 class class class wbr 4047 ◡ccnv 4678 Rel wrel 4684 Fun wfun 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-fun 5278 |
| This theorem is referenced by: funcnv 5340 fun2cnv 5343 fun11 5346 dff12 5487 1stconst 6314 2ndconst 6315 |
| Copyright terms: Public domain | W3C validator |