![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funcnv2 | GIF version |
Description: A simpler equivalence for single-rooted (see funcnv 5307). (Contributed by NM, 9-Aug-2004.) |
Ref | Expression |
---|---|
funcnv2 | ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5035 | . . 3 ⊢ Rel ◡𝐴 | |
2 | dffun6 5260 | . . 3 ⊢ (Fun ◡𝐴 ↔ (Rel ◡𝐴 ∧ ∀𝑦∃*𝑥 𝑦◡𝐴𝑥)) | |
3 | 1, 2 | mpbiran 942 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑦◡𝐴𝑥) |
4 | vex 2763 | . . . . 5 ⊢ 𝑦 ∈ V | |
5 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
6 | 4, 5 | brcnv 4839 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
7 | 6 | mobii 2079 | . . 3 ⊢ (∃*𝑥 𝑦◡𝐴𝑥 ↔ ∃*𝑥 𝑥𝐴𝑦) |
8 | 7 | albii 1481 | . 2 ⊢ (∀𝑦∃*𝑥 𝑦◡𝐴𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
9 | 3, 8 | bitri 184 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1362 ∃*wmo 2043 class class class wbr 4029 ◡ccnv 4654 Rel wrel 4660 Fun wfun 5240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-id 4322 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-fun 5248 |
This theorem is referenced by: funcnv 5307 fun2cnv 5310 fun11 5313 dff12 5450 1stconst 6265 2ndconst 6266 |
Copyright terms: Public domain | W3C validator |