ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnv2 GIF version

Theorem funcnv2 5319
Description: A simpler equivalence for single-rooted (see funcnv 5320). (Contributed by NM, 9-Aug-2004.)
Assertion
Ref Expression
funcnv2 (Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem funcnv2
StepHypRef Expression
1 relcnv 5048 . . 3 Rel 𝐴
2 dffun6 5273 . . 3 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑦∃*𝑥 𝑦𝐴𝑥))
31, 2mpbiran 942 . 2 (Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑦𝐴𝑥)
4 vex 2766 . . . . 5 𝑦 ∈ V
5 vex 2766 . . . . 5 𝑥 ∈ V
64, 5brcnv 4850 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
76mobii 2082 . . 3 (∃*𝑥 𝑦𝐴𝑥 ↔ ∃*𝑥 𝑥𝐴𝑦)
87albii 1484 . 2 (∀𝑦∃*𝑥 𝑦𝐴𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
93, 8bitri 184 1 (Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1362  ∃*wmo 2046   class class class wbr 4034  ccnv 4663  Rel wrel 4669  Fun wfun 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-fun 5261
This theorem is referenced by:  funcnv  5320  fun2cnv  5323  fun11  5326  dff12  5463  1stconst  6280  2ndconst  6281
  Copyright terms: Public domain W3C validator