ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulm1d GIF version

Theorem mulm1d 8431
Description: Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
mulm1d.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
mulm1d (𝜑 → (-1 · 𝐴) = -𝐴)

Proof of Theorem mulm1d
StepHypRef Expression
1 mulm1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 mulm1 8421 . 2 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
31, 2syl 14 1 (𝜑 → (-1 · 𝐴) = -𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  (class class class)co 5919  cc 7872  1c1 7875   · cmul 7879  -cneg 8193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-resscn 7966  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sub 8194  df-neg 8195
This theorem is referenced by:  mulreim  8625  recextlem1  8672  ofnegsub  8983  modqnegd  10453  modsumfzodifsn  10470  m1expcl2  10635  remullem  11018  fsumneg  11597  efi4p  11863  cosadd  11883  absefib  11917  efieq1re  11918  pythagtriplem4  12409  dvmptnegcn  14901  sin0pilem1  14957  cosq34lt1  15026  lgsdir2lem4  15188  gausslemma2dlem5a  15222  lgseisenlem1  15227  lgseisenlem2  15228
  Copyright terms: Public domain W3C validator