ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulm1d GIF version

Theorem mulm1d 8489
Description: Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
mulm1d.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
mulm1d (𝜑 → (-1 · 𝐴) = -𝐴)

Proof of Theorem mulm1d
StepHypRef Expression
1 mulm1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 mulm1 8479 . 2 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
31, 2syl 14 1 (𝜑 → (-1 · 𝐴) = -𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  (class class class)co 5951  cc 7930  1c1 7933   · cmul 7937  -cneg 8251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-setind 4589  ax-resscn 8024  ax-1cn 8025  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-sub 8252  df-neg 8253
This theorem is referenced by:  mulreim  8684  recextlem1  8731  ofnegsub  9042  modqnegd  10531  modsumfzodifsn  10548  m1expcl2  10713  remullem  11226  fsumneg  11806  efi4p  12072  cosadd  12092  absefib  12126  efieq1re  12127  bitsinv1lem  12316  pythagtriplem4  12635  dvmptnegcn  15238  sin0pilem1  15297  cosq34lt1  15366  lgsdir2lem4  15552  gausslemma2dlem5a  15586  lgseisenlem1  15591  lgseisenlem2  15592
  Copyright terms: Public domain W3C validator