Theorem List for Intuitionistic Logic Explorer - 8301-8400   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | negne0i 8301 | 
The negative of a nonzero number is nonzero.  (Contributed by NM,
         30-Jul-2004.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐴 ≠
 0    ⇒   ⊢ -𝐴 ≠ 0 | 
|   | 
| Theorem | subcli 8302 | 
Closure law for subtraction.  (Contributed by NM, 26-Nov-1994.)
       (Revised by Mario Carneiro, 21-Dec-2013.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (𝐴 − 𝐵) ∈ ℂ | 
|   | 
| Theorem | pncan3i 8303 | 
Subtraction and addition of equals.  (Contributed by NM,
       26-Nov-1994.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (𝐴 + (𝐵 − 𝐴)) = 𝐵 | 
|   | 
| Theorem | negsubi 8304 | 
Relationship between subtraction and negative.  Theorem I.3 of [Apostol]
       p. 18.  (Contributed by NM, 26-Nov-1994.)  (Proof shortened by Andrew
       Salmon, 22-Oct-2011.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (𝐴 + -𝐵) = (𝐴 − 𝐵) | 
|   | 
| Theorem | subnegi 8305 | 
Relationship between subtraction and negative.  (Contributed by NM,
       1-Dec-2005.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (𝐴 − -𝐵) = (𝐴 + 𝐵) | 
|   | 
| Theorem | subeq0i 8306 | 
If the difference between two numbers is zero, they are equal.
       (Contributed by NM, 8-May-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵) | 
|   | 
| Theorem | neg11i 8307 | 
Negative is one-to-one.  (Contributed by NM, 1-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (-𝐴 = -𝐵 ↔ 𝐴 = 𝐵) | 
|   | 
| Theorem | negcon1i 8308 | 
Negative contraposition law.  (Contributed by NM, 25-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴) | 
|   | 
| Theorem | negcon2i 8309 | 
Negative contraposition law.  (Contributed by NM, 25-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (𝐴 = -𝐵 ↔ 𝐵 = -𝐴) | 
|   | 
| Theorem | negdii 8310 | 
Distribution of negative over addition.  (Contributed by NM,
       28-Jul-1999.)  (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ -(𝐴 + 𝐵) = (-𝐴 + -𝐵) | 
|   | 
| Theorem | negsubdii 8311 | 
Distribution of negative over subtraction.  (Contributed by NM,
       6-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ -(𝐴 − 𝐵) = (-𝐴 + 𝐵) | 
|   | 
| Theorem | negsubdi2i 8312 | 
Distribution of negative over subtraction.  (Contributed by NM,
       1-Oct-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ -(𝐴 − 𝐵) = (𝐵 − 𝐴) | 
|   | 
| Theorem | subaddi 8313 | 
Relationship between subtraction and addition.  (Contributed by NM,
       26-Nov-1994.)  (Revised by Mario Carneiro, 21-Dec-2013.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈
 ℂ    ⇒   ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴) | 
|   | 
| Theorem | subadd2i 8314 | 
Relationship between subtraction and addition.  (Contributed by NM,
       15-Dec-2006.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈
 ℂ    ⇒   ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴) | 
|   | 
| Theorem | subaddrii 8315 | 
Relationship between subtraction and addition.  (Contributed by NM,
         16-Dec-2006.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈ ℂ    &   ⊢ (𝐵 + 𝐶) = 𝐴    ⇒   ⊢ (𝐴 − 𝐵) = 𝐶 | 
|   | 
| Theorem | subsub23i 8316 | 
Swap subtrahend and result of subtraction.  (Contributed by NM,
       7-Oct-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈
 ℂ    ⇒   ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵) | 
|   | 
| Theorem | addsubassi 8317 | 
Associative-type law for subtraction and addition.  (Contributed by NM,
       16-Sep-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈
 ℂ    ⇒   ⊢ ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶)) | 
|   | 
| Theorem | addsubi 8318 | 
Law for subtraction and addition.  (Contributed by NM, 6-Aug-2003.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈
 ℂ    ⇒   ⊢ ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵) | 
|   | 
| Theorem | subcani 8319 | 
Cancellation law for subtraction.  (Contributed by NM, 8-Feb-2005.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈
 ℂ    ⇒   ⊢ ((𝐴 − 𝐵) = (𝐴 − 𝐶) ↔ 𝐵 = 𝐶) | 
|   | 
| Theorem | subcan2i 8320 | 
Cancellation law for subtraction.  (Contributed by NM, 8-Feb-2005.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈
 ℂ    ⇒   ⊢ ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵) | 
|   | 
| Theorem | pnncani 8321 | 
Cancellation law for mixed addition and subtraction.  (Contributed by
       NM, 14-Jan-2006.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈
 ℂ    ⇒   ⊢ ((𝐴 + 𝐵) − (𝐴 − 𝐶)) = (𝐵 + 𝐶) | 
|   | 
| Theorem | addsub4i 8322 | 
Rearrangement of 4 terms in a mixed addition and subtraction.
       (Contributed by NM, 17-Oct-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈ ℂ    &   ⊢ 𝐷 ∈
 ℂ    ⇒   ⊢ ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 − 𝐶) + (𝐵 − 𝐷)) | 
|   | 
| Theorem | 0reALT 8323 | 
Alternate proof of 0re 8026.  (Contributed by NM, 19-Feb-2005.)
     (Proof modification is discouraged.)  (New usage is discouraged.)
 | 
| ⊢ 0 ∈ ℝ | 
|   | 
| Theorem | negcld 8324 | 
Closure law for negative.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → -𝐴 ∈ ℂ) | 
|   | 
| Theorem | subidd 8325 | 
Subtraction of a number from itself.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 − 𝐴) = 0) | 
|   | 
| Theorem | subid1d 8326 | 
Identity law for subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 − 0) = 𝐴) | 
|   | 
| Theorem | negidd 8327 | 
Addition of a number and its negative.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 + -𝐴) = 0) | 
|   | 
| Theorem | negnegd 8328 | 
A number is equal to the negative of its negative.  Theorem I.4 of
       [Apostol] p. 18.  (Contributed by Mario
Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → --𝐴 = 𝐴) | 
|   | 
| Theorem | negeq0d 8329 | 
A number is zero iff its negative is zero.  (Contributed by Mario
       Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 = 0 ↔ -𝐴 = 0)) | 
|   | 
| Theorem | negne0bd 8330 | 
A number is nonzero iff its negative is nonzero.  (Contributed by Mario
       Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0)) | 
|   | 
| Theorem | negcon1d 8331 | 
Contraposition law for unary minus.  Deduction form of negcon1 8278.
         (Contributed by David Moews, 28-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴)) | 
|   | 
| Theorem | negcon1ad 8332 | 
Contraposition law for unary minus.  One-way deduction form of
         negcon1 8278.  (Contributed by David Moews, 28-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → -𝐴 = 𝐵)    ⇒   ⊢ (𝜑 → -𝐵 = 𝐴) | 
|   | 
| Theorem | neg11ad 8333 | 
The negatives of two complex numbers are equal iff they are equal.
         Deduction form of neg11 8277.  Generalization of neg11d 8349.
         (Contributed by David Moews, 28-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (-𝐴 = -𝐵 ↔ 𝐴 = 𝐵)) | 
|   | 
| Theorem | negned 8334 | 
If two complex numbers are unequal, so are their negatives.
         Contrapositive of neg11d 8349.  (Contributed by David Moews,
         28-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 ≠ 𝐵)    ⇒   ⊢ (𝜑 → -𝐴 ≠ -𝐵) | 
|   | 
| Theorem | negne0d 8335 | 
The negative of a nonzero number is nonzero.  See also negap0d 8658 which
         is similar but for apart from zero rather than not equal to zero.
         (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 ≠ 0)    ⇒   ⊢ (𝜑 → -𝐴 ≠ 0) | 
|   | 
| Theorem | negrebd 8336 | 
The negative of a real is real.  (Contributed by Mario Carneiro,
         28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → -𝐴 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → 𝐴 ∈ ℝ) | 
|   | 
| Theorem | subcld 8337 | 
Closure law for subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) | 
|   | 
| Theorem | pncand 8338 | 
Cancellation law for subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | 
|   | 
| Theorem | pncan2d 8339 | 
Cancellation law for subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐴) = 𝐵) | 
|   | 
| Theorem | pncan3d 8340 | 
Subtraction and addition of equals.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 + (𝐵 − 𝐴)) = 𝐵) | 
|   | 
| Theorem | npcand 8341 | 
Cancellation law for subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐵) = 𝐴) | 
|   | 
| Theorem | nncand 8342 | 
Cancellation law for subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | 
|   | 
| Theorem | negsubd 8343 | 
Relationship between subtraction and negative.  Theorem I.3 of [Apostol]
       p. 18.  (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | 
|   | 
| Theorem | subnegd 8344 | 
Relationship between subtraction and negative.  (Contributed by Mario
       Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) | 
|   | 
| Theorem | subeq0d 8345 | 
If the difference between two numbers is zero, they are equal.
         (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → (𝐴 − 𝐵) = 0)    ⇒   ⊢ (𝜑 → 𝐴 = 𝐵) | 
|   | 
| Theorem | subne0d 8346 | 
Two unequal numbers have nonzero difference.  See also subap0d 8671 which
         is the same thing for apartness rather than negated equality.
         (Contributed by Mario Carneiro, 1-Jan-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 ≠ 𝐵)    ⇒   ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) | 
|   | 
| Theorem | subeq0ad 8347 | 
The difference of two complex numbers is zero iff they are equal.
       Deduction form of subeq0 8252.  Generalization of subeq0d 8345.
       (Contributed by David Moews, 28-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | 
|   | 
| Theorem | subne0ad 8348 | 
If the difference of two complex numbers is nonzero, they are unequal.
         Converse of subne0d 8346.  Contrapositive of subeq0bd 8405.  (Contributed
         by David Moews, 28-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0)    ⇒   ⊢ (𝜑 → 𝐴 ≠ 𝐵) | 
|   | 
| Theorem | neg11d 8349 | 
If the difference between two numbers is zero, they are equal.
         (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → -𝐴 = -𝐵)    ⇒   ⊢ (𝜑 → 𝐴 = 𝐵) | 
|   | 
| Theorem | negdid 8350 | 
Distribution of negative over addition.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) | 
|   | 
| Theorem | negdi2d 8351 | 
Distribution of negative over addition.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → -(𝐴 + 𝐵) = (-𝐴 − 𝐵)) | 
|   | 
| Theorem | negsubdid 8352 | 
Distribution of negative over subtraction.  (Contributed by Mario
       Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → -(𝐴 − 𝐵) = (-𝐴 + 𝐵)) | 
|   | 
| Theorem | negsubdi2d 8353 | 
Distribution of negative over subtraction.  (Contributed by Mario
       Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) | 
|   | 
| Theorem | neg2subd 8354 | 
Relationship between subtraction and negative.  (Contributed by Mario
       Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (-𝐴 − -𝐵) = (𝐵 − 𝐴)) | 
|   | 
| Theorem | subaddd 8355 | 
Relationship between subtraction and addition.  (Contributed by Mario
       Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) | 
|   | 
| Theorem | subadd2d 8356 | 
Relationship between subtraction and addition.  (Contributed by Mario
       Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴)) | 
|   | 
| Theorem | addsubassd 8357 | 
Associative-type law for subtraction and addition.  (Contributed by
       Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) | 
|   | 
| Theorem | addsubd 8358 | 
Law for subtraction and addition.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | 
|   | 
| Theorem | subadd23d 8359 | 
Commutative/associative law for addition and subtraction.  (Contributed
       by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐶) = (𝐴 + (𝐶 − 𝐵))) | 
|   | 
| Theorem | addsub12d 8360 | 
Commutative/associative law for addition and subtraction.  (Contributed
       by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 + (𝐵 − 𝐶)) = (𝐵 + (𝐴 − 𝐶))) | 
|   | 
| Theorem | npncand 8361 | 
Cancellation law for subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐵 − 𝐶)) = (𝐴 − 𝐶)) | 
|   | 
| Theorem | nppcand 8362 | 
Cancellation law for subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (((𝐴 − 𝐵) + 𝐶) + 𝐵) = (𝐴 + 𝐶)) | 
|   | 
| Theorem | nppcan2d 8363 | 
Cancellation law for subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − (𝐵 + 𝐶)) + 𝐶) = (𝐴 − 𝐵)) | 
|   | 
| Theorem | nppcan3d 8364 | 
Cancellation law for subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐶 + 𝐵)) = (𝐴 + 𝐶)) | 
|   | 
| Theorem | subsubd 8365 | 
Law for double subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) | 
|   | 
| Theorem | subsub2d 8366 | 
Law for double subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = (𝐴 + (𝐶 − 𝐵))) | 
|   | 
| Theorem | subsub3d 8367 | 
Law for double subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 + 𝐶) − 𝐵)) | 
|   | 
| Theorem | subsub4d 8368 | 
Law for double subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) − 𝐶) = (𝐴 − (𝐵 + 𝐶))) | 
|   | 
| Theorem | sub32d 8369 | 
Swap the second and third terms in a double subtraction.  (Contributed
       by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) | 
|   | 
| Theorem | nnncand 8370 | 
Cancellation law for subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − (𝐵 − 𝐶)) − 𝐶) = (𝐴 − 𝐵)) | 
|   | 
| Theorem | nnncan1d 8371 | 
Cancellation law for subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) − (𝐴 − 𝐶)) = (𝐶 − 𝐵)) | 
|   | 
| Theorem | nnncan2d 8372 | 
Cancellation law for subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) | 
|   | 
| Theorem | npncan3d 8373 | 
Cancellation law for subtraction.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐶 − 𝐴)) = (𝐶 − 𝐵)) | 
|   | 
| Theorem | pnpcand 8374 | 
Cancellation law for mixed addition and subtraction.  (Contributed by
       Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐴 + 𝐶)) = (𝐵 − 𝐶)) | 
|   | 
| Theorem | pnpcan2d 8375 | 
Cancellation law for mixed addition and subtraction.  (Contributed by
       Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 + 𝐶) − (𝐵 + 𝐶)) = (𝐴 − 𝐵)) | 
|   | 
| Theorem | pnncand 8376 | 
Cancellation law for mixed addition and subtraction.  (Contributed by
       Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐴 − 𝐶)) = (𝐵 + 𝐶)) | 
|   | 
| Theorem | ppncand 8377 | 
Cancellation law for mixed addition and subtraction.  (Contributed by
       Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 − 𝐵)) = (𝐴 + 𝐶)) | 
|   | 
| Theorem | subcand 8378 | 
Cancellation law for subtraction.  (Contributed by Mario Carneiro,
         27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐴 − 𝐶))    ⇒   ⊢ (𝜑 → 𝐵 = 𝐶) | 
|   | 
| Theorem | subcan2d 8379 | 
Cancellation law for subtraction.  (Contributed by Mario Carneiro,
         22-Sep-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐵 − 𝐶))    ⇒   ⊢ (𝜑 → 𝐴 = 𝐵) | 
|   | 
| Theorem | subcanad 8380 | 
Cancellation law for subtraction.  Deduction form of subcan 8281.
       Generalization of subcand 8378.  (Contributed by David Moews,
       28-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐴 − 𝐶) ↔ 𝐵 = 𝐶)) | 
|   | 
| Theorem | subneintrd 8381 | 
Introducing subtraction on both sides of a statement of inequality.
         Contrapositive of subcand 8378.  (Contributed by David Moews,
         28-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ≠ 𝐶)    ⇒   ⊢ (𝜑 → (𝐴 − 𝐵) ≠ (𝐴 − 𝐶)) | 
|   | 
| Theorem | subcan2ad 8382 | 
Cancellation law for subtraction.  Deduction form of subcan2 8251.
       Generalization of subcan2d 8379.  (Contributed by David Moews,
       28-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵)) | 
|   | 
| Theorem | subneintr2d 8383 | 
Introducing subtraction on both sides of a statement of inequality.
         Contrapositive of subcan2d 8379.  (Contributed by David Moews,
         28-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 ≠ 𝐵)    ⇒   ⊢ (𝜑 → (𝐴 − 𝐶) ≠ (𝐵 − 𝐶)) | 
|   | 
| Theorem | addsub4d 8384 | 
Rearrangement of 4 terms in a mixed addition and subtraction.
       (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐷 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 − 𝐶) + (𝐵 − 𝐷))) | 
|   | 
| Theorem | subadd4d 8385 | 
Rearrangement of 4 terms in a mixed addition and subtraction.
       (Contributed by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐷 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 + 𝐷) − (𝐵 + 𝐶))) | 
|   | 
| Theorem | sub4d 8386 | 
Rearrangement of 4 terms in a subtraction.  (Contributed by Mario
       Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐷 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 − 𝐶) − (𝐵 − 𝐷))) | 
|   | 
| Theorem | 2addsubd 8387 | 
Law for subtraction and addition.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐷 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶) − 𝐷) = (((𝐴 + 𝐶) − 𝐷) + 𝐵)) | 
|   | 
| Theorem | addsubeq4d 8388 | 
Relation between sums and differences.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐷 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶 − 𝐴) = (𝐵 − 𝐷))) | 
|   | 
| Theorem | subeqxfrd 8389 | 
Transfer two terms of a subtraction in an equality.  (Contributed by
       Thierry Arnoux, 2-Feb-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐷 ∈ ℂ)    &   ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷))    ⇒   ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐵 − 𝐷)) | 
|   | 
| Theorem | mvlraddd 8390 | 
Move LHS right addition to RHS. (Contributed by David A. Wheeler,
       15-Oct-2018.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → (𝐴 + 𝐵) = 𝐶)    ⇒   ⊢ (𝜑 → 𝐴 = (𝐶 − 𝐵)) | 
|   | 
| Theorem | mvlladdd 8391 | 
Move LHS left addition to RHS. (Contributed by David A. Wheeler,
       15-Oct-2018.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → (𝐴 + 𝐵) = 𝐶)    ⇒   ⊢ (𝜑 → 𝐵 = (𝐶 − 𝐴)) | 
|   | 
| Theorem | mvrraddd 8392 | 
Move RHS right addition to LHS. (Contributed by David A. Wheeler,
       15-Oct-2018.)
 | 
| ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶))    ⇒   ⊢ (𝜑 → (𝐴 − 𝐶) = 𝐵) | 
|   | 
| Theorem | mvrladdd 8393 | 
Move RHS left addition to LHS. (Contributed by David A. Wheeler,
       11-Oct-2018.)
 | 
| ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶))    ⇒   ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) | 
|   | 
| Theorem | assraddsubd 8394 | 
Associate RHS addition-subtraction.  (Contributed by David A. Wheeler,
       15-Oct-2018.)
 | 
| ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐷 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 = ((𝐵 + 𝐶) − 𝐷))    ⇒   ⊢ (𝜑 → 𝐴 = (𝐵 + (𝐶 − 𝐷))) | 
|   | 
| Theorem | subaddeqd 8395 | 
Transfer two terms of a subtraction to an addition in an equality.
       (Contributed by Thierry Arnoux, 2-Feb-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐷 ∈ ℂ)    &   ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))    ⇒   ⊢ (𝜑 → (𝐴 − 𝐷) = (𝐶 − 𝐵)) | 
|   | 
| Theorem | addlsub 8396 | 
Left-subtraction:  Subtraction of the left summand from the result of an
       addition.  (Contributed by BJ, 6-Jun-2019.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐴 = (𝐶 − 𝐵))) | 
|   | 
| Theorem | addrsub 8397 | 
Right-subtraction:  Subtraction of the right summand from the result of
       an addition.  (Contributed by BJ, 6-Jun-2019.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐵 = (𝐶 − 𝐴))) | 
|   | 
| Theorem | subexsub 8398 | 
A subtraction law:  Exchanging the subtrahend and the result of the
       subtraction.  (Contributed by BJ, 6-Jun-2019.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 = (𝐶 − 𝐵) ↔ 𝐵 = (𝐶 − 𝐴))) | 
|   | 
| Theorem | addid0 8399 | 
If adding a number to a another number yields the other number, the added
     number must be 0.  This shows that 0 is the unique (right)
     identity of the complex numbers.  (Contributed by AV, 17-Jan-2021.)
 | 
| ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 ↔ 𝑌 = 0)) | 
|   | 
| Theorem | addn0nid 8400 | 
Adding a nonzero number to a complex number does not yield the complex
     number.  (Contributed by AV, 17-Jan-2021.)
 | 
| ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑌 ≠ 0) → (𝑋 + 𝑌) ≠ 𝑋) |