Theorem List for Intuitionistic Logic Explorer - 8301-8400 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | mul32i 8301 |
Commutative/associative law that swaps the last two factors in a triple
product. (Contributed by NM, 11-May-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵) |
| |
| Theorem | mul4i 8302 |
Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)) |
| |
| Theorem | addridd 8303 |
0 is an additive identity. (Contributed by Mario
Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| |
| Theorem | addlidd 8304 |
0 is a left identity for addition. (Contributed by
Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
| |
| Theorem | addcomd 8305 |
Addition commutes. Based on ideas by Eric Schmidt. (Contributed by
Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| |
| Theorem | mul12d 8306 |
Commutative/associative law that swaps the first two factors in a triple
product. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) |
| |
| Theorem | mul32d 8307 |
Commutative/associative law that swaps the last two factors in a triple
product. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
| |
| Theorem | mul31d 8308 |
Commutative/associative law. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴)) |
| |
| Theorem | mul4d 8309 |
Rearrangement of 4 factors. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
| |
| Theorem | muladd11r 8310 |
A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1)) |
| |
| Theorem | comraddd 8311 |
Commute RHS addition, in deduction form. (Contributed by David A.
Wheeler, 11-Oct-2018.)
|
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
| |
| 4.3 Real and complex numbers - basic
operations
|
| |
| 4.3.1 Addition
|
| |
| Theorem | add12 8312 |
Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by NM, 11-May-2004.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))) |
| |
| Theorem | add32 8313 |
Commutative/associative law that swaps the last two terms in a triple sum.
(Contributed by NM, 13-Nov-1999.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) |
| |
| Theorem | add32r 8314 |
Commutative/associative law that swaps the last two terms in a triple sum,
rearranging the parentheses. (Contributed by Paul Chapman,
18-May-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = ((𝐴 + 𝐶) + 𝐵)) |
| |
| Theorem | add4 8315 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.)
(Proof shortened by Andrew Salmon, 22-Oct-2011.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) |
| |
| Theorem | add42 8316 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 12-May-2005.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))) |
| |
| Theorem | add12i 8317 |
Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by NM, 21-Jan-1997.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)) |
| |
| Theorem | add32i 8318 |
Commutative/associative law that swaps the last two terms in a triple
sum. (Contributed by NM, 21-Jan-1997.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵) |
| |
| Theorem | add4i 8319 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)) |
| |
| Theorem | add42i 8320 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) |
| |
| Theorem | add12d 8321 |
Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))) |
| |
| Theorem | add32d 8322 |
Commutative/associative law that swaps the last two terms in a triple
sum. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) |
| |
| Theorem | add4d 8323 |
Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) |
| |
| Theorem | add42d 8324 |
Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))) |
| |
| 4.3.2 Subtraction
|
| |
| Syntax | cmin 8325 |
Extend class notation to include subtraction.
|
| class − |
| |
| Syntax | cneg 8326 |
Extend class notation to include unary minus. The symbol - is not a
class by itself but part of a compound class definition. We do this
rather than making it a formal function since it is so commonly used.
Note: We use different symbols for unary minus (-) and subtraction
cmin 8325 (−) to prevent
syntax ambiguity. For example, looking at the
syntax definition co 6007, if we used the same symbol
then "( − 𝐴 − 𝐵) " could mean either
"− 𝐴 " minus "𝐵",
or
it could represent the (meaningless) operation of
classes "− " and "− 𝐵
" connected with "operation" "𝐴".
On the other hand, "(-𝐴 − 𝐵) " is unambiguous.
|
| class -𝐴 |
| |
| Definition | df-sub 8327* |
Define subtraction. Theorem subval 8346 shows its value (and describes how
this definition works), Theorem subaddi 8441 relates it to addition, and
Theorems subcli 8430 and resubcli 8417 prove its closure laws. (Contributed
by NM, 26-Nov-1994.)
|
| ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| |
| Definition | df-neg 8328 |
Define the negative of a number (unary minus). We use different symbols
for unary minus (-) and subtraction (−) to prevent syntax
ambiguity. See cneg 8326 for a discussion of this. (Contributed by
NM,
10-Feb-1995.)
|
| ⊢ -𝐴 = (0 − 𝐴) |
| |
| Theorem | cnegexlem1 8329 |
Addition cancellation of a real number from two complex numbers. Lemma
for cnegex 8332. (Contributed by Eric Schmidt, 22-May-2007.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
| |
| Theorem | cnegexlem2 8330 |
Existence of a real number which produces a real number when multiplied
by i. (Hint: zero is such a number, although we
don't need to
prove that yet). Lemma for cnegex 8332. (Contributed by Eric Schmidt,
22-May-2007.)
|
| ⊢ ∃𝑦 ∈ ℝ (i · 𝑦) ∈
ℝ |
| |
| Theorem | cnegexlem3 8331* |
Existence of real number difference. Lemma for cnegex 8332. (Contributed
by Eric Schmidt, 22-May-2007.)
|
| ⊢ ((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ∃𝑐 ∈ ℝ (𝑏 + 𝑐) = 𝑦) |
| |
| Theorem | cnegex 8332* |
Existence of the negative of a complex number. (Contributed by Eric
Schmidt, 21-May-2007.)
|
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) |
| |
| Theorem | cnegex2 8333* |
Existence of a left inverse for addition. (Contributed by Scott Fenton,
3-Jan-2013.)
|
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) |
| |
| Theorem | addcan 8334 |
Cancellation law for addition. Theorem I.1 of [Apostol] p. 18.
(Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro,
27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
| |
| Theorem | addcan2 8335 |
Cancellation law for addition. (Contributed by NM, 30-Jul-2004.)
(Revised by Scott Fenton, 3-Jan-2013.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | addcani 8336 |
Cancellation law for addition. Theorem I.1 of [Apostol] p. 18.
(Contributed by NM, 27-Oct-1999.) (Revised by Scott Fenton,
3-Jan-2013.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶) |
| |
| Theorem | addcan2i 8337 |
Cancellation law for addition. Theorem I.1 of [Apostol] p. 18.
(Contributed by NM, 14-May-2003.) (Revised by Scott Fenton,
3-Jan-2013.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵) |
| |
| Theorem | addcand 8338 |
Cancellation law for addition. Theorem I.1 of [Apostol] p. 18.
(Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
| |
| Theorem | addcan2d 8339 |
Cancellation law for addition. Theorem I.1 of [Apostol] p. 18.
(Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | addcanad 8340 |
Cancelling a term on the left-hand side of a sum in an equality.
Consequence of addcand 8338. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐴 + 𝐶)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) |
| |
| Theorem | addcan2ad 8341 |
Cancelling a term on the right-hand side of a sum in an equality.
Consequence of addcan2d 8339. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | addneintrd 8342 |
Introducing a term on the left-hand side of a sum in a negated
equality. Contrapositive of addcanad 8340. Consequence of addcand 8338.
(Contributed by David Moews, 28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ≠ (𝐴 + 𝐶)) |
| |
| Theorem | addneintr2d 8343 |
Introducing a term on the right-hand side of a sum in a negated
equality. Contrapositive of addcan2ad 8341. Consequence of
addcan2d 8339. (Contributed by David Moews, 28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 + 𝐶) ≠ (𝐵 + 𝐶)) |
| |
| Theorem | 0cnALT 8344 |
Alternate proof of 0cn 8146. (Contributed by NM, 19-Feb-2005.) (Revised
by
Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ 0 ∈ ℂ |
| |
| Theorem | negeu 8345* |
Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18.
(Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro,
27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵) |
| |
| Theorem | subval 8346* |
Value of subtraction, which is the (unique) element 𝑥 such that
𝐵 +
𝑥 = 𝐴. (Contributed by NM, 4-Aug-2007.)
(Revised by Mario
Carneiro, 2-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
| |
| Theorem | negeq 8347 |
Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.)
|
| ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| |
| Theorem | negeqi 8348 |
Equality inference for negatives. (Contributed by NM, 14-Feb-1995.)
|
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ -𝐴 = -𝐵 |
| |
| Theorem | negeqd 8349 |
Equality deduction for negatives. (Contributed by NM, 14-May-1999.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → -𝐴 = -𝐵) |
| |
| Theorem | nfnegd 8350 |
Deduction version of nfneg 8351. (Contributed by NM, 29-Feb-2008.)
(Revised by Mario Carneiro, 15-Oct-2016.)
|
| ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
| |
| Theorem | nfneg 8351 |
Bound-variable hypothesis builder for the negative of a complex number.
(Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro,
15-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥-𝐴 |
| |
| Theorem | csbnegg 8352 |
Move class substitution in and out of the negative of a number.
(Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon,
22-Oct-2011.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌-𝐵 = -⦋𝐴 / 𝑥⦌𝐵) |
| |
| Theorem | subcl 8353 |
Closure law for subtraction. (Contributed by NM, 10-May-1999.)
(Revised by Mario Carneiro, 21-Dec-2013.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
| |
| Theorem | negcl 8354 |
Closure law for negative. (Contributed by NM, 6-Aug-2003.)
|
| ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| |
| Theorem | negicn 8355 |
-i is a complex number (common case). (Contributed by
David A.
Wheeler, 7-Dec-2018.)
|
| ⊢ -i ∈ ℂ |
| |
| Theorem | subf 8356 |
Subtraction is an operation on the complex numbers. (Contributed by NM,
4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
|
| ⊢ − :(ℂ ×
ℂ)⟶ℂ |
| |
| Theorem | subadd 8357 |
Relationship between subtraction and addition. (Contributed by NM,
20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
| |
| Theorem | subadd2 8358 |
Relationship between subtraction and addition. (Contributed by Scott
Fenton, 5-Jul-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴)) |
| |
| Theorem | subsub23 8359 |
Swap subtrahend and result of subtraction. (Contributed by NM,
14-Dec-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) |
| |
| Theorem | pncan 8360 |
Cancellation law for subtraction. (Contributed by NM, 10-May-2004.)
(Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| |
| Theorem | pncan2 8361 |
Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵) |
| |
| Theorem | pncan3 8362 |
Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
| |
| Theorem | npcan 8363 |
Cancellation law for subtraction. (Contributed by NM, 10-May-2004.)
(Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| |
| Theorem | addsubass 8364 |
Associative-type law for addition and subtraction. (Contributed by NM,
6-Aug-2003.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) |
| |
| Theorem | addsub 8365 |
Law for addition and subtraction. (Contributed by NM, 19-Aug-2001.)
(Proof shortened by Andrew Salmon, 22-Oct-2011.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| |
| Theorem | subadd23 8366 |
Commutative/associative law for addition and subtraction. (Contributed by
NM, 1-Feb-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐶) = (𝐴 + (𝐶 − 𝐵))) |
| |
| Theorem | addsub12 8367 |
Commutative/associative law for addition and subtraction. (Contributed by
NM, 8-Feb-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 − 𝐶)) = (𝐵 + (𝐴 − 𝐶))) |
| |
| Theorem | 2addsub 8368 |
Law for subtraction and addition. (Contributed by NM, 20-Nov-2005.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 + 𝐵) + 𝐶) − 𝐷) = (((𝐴 + 𝐶) − 𝐷) + 𝐵)) |
| |
| Theorem | addsubeq4 8369 |
Relation between sums and differences. (Contributed by Jeff Madsen,
17-Jun-2010.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶 − 𝐴) = (𝐵 − 𝐷))) |
| |
| Theorem | pncan3oi 8370 |
Subtraction and addition of equals. Almost but not exactly the same as
pncan3i 8431 and pncan 8360, this order happens often when
applying
"operations to both sides" so create a theorem specifically
for it. A
deduction version of this is available as pncand 8466. (Contributed by
David A. Wheeler, 11-Oct-2018.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) − 𝐵) = 𝐴 |
| |
| Theorem | mvrraddi 8371 |
Move RHS right addition to LHS. (Contributed by David A. Wheeler,
11-Oct-2018.)
|
| ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐴 = (𝐵 + 𝐶) ⇒ ⊢ (𝐴 − 𝐶) = 𝐵 |
| |
| Theorem | mvlladdi 8372 |
Move LHS left addition to RHS. (Contributed by David A. Wheeler,
11-Oct-2018.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 + 𝐵) = 𝐶 ⇒ ⊢ 𝐵 = (𝐶 − 𝐴) |
| |
| Theorem | subid 8373 |
Subtraction of a number from itself. (Contributed by NM, 8-Oct-1999.)
(Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 − 𝐴) = 0) |
| |
| Theorem | subid1 8374 |
Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised
by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) |
| |
| Theorem | npncan 8375 |
Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐵 − 𝐶)) = (𝐴 − 𝐶)) |
| |
| Theorem | nppcan 8376 |
Cancellation law for subtraction. (Contributed by NM, 1-Sep-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) + 𝐶) + 𝐵) = (𝐴 + 𝐶)) |
| |
| Theorem | nnpcan 8377 |
Cancellation law for subtraction: ((a-b)-c)+b = a-c holds for complex
numbers a,b,c. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) − 𝐶) + 𝐵) = (𝐴 − 𝐶)) |
| |
| Theorem | nppcan3 8378 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
14-Sep-2015.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐶 + 𝐵)) = (𝐴 + 𝐶)) |
| |
| Theorem | subcan2 8379 |
Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | subeq0 8380 |
If the difference between two numbers is zero, they are equal.
(Contributed by NM, 16-Nov-1999.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| |
| Theorem | npncan2 8381 |
Cancellation law for subtraction. (Contributed by Scott Fenton,
21-Jun-2013.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐵 − 𝐴)) = 0) |
| |
| Theorem | subsub2 8382 |
Law for double subtraction. (Contributed by NM, 30-Jun-2005.) (Revised
by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = (𝐴 + (𝐶 − 𝐵))) |
| |
| Theorem | nncan 8383 |
Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.)
(Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| |
| Theorem | subsub 8384 |
Law for double subtraction. (Contributed by NM, 13-May-2004.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) |
| |
| Theorem | nppcan2 8385 |
Cancellation law for subtraction. (Contributed by NM, 29-Sep-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 + 𝐶)) + 𝐶) = (𝐴 − 𝐵)) |
| |
| Theorem | subsub3 8386 |
Law for double subtraction. (Contributed by NM, 27-Jul-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 + 𝐶) − 𝐵)) |
| |
| Theorem | subsub4 8387 |
Law for double subtraction. (Contributed by NM, 19-Aug-2005.) (Revised
by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐶) = (𝐴 − (𝐵 + 𝐶))) |
| |
| Theorem | sub32 8388 |
Swap the second and third terms in a double subtraction. (Contributed by
NM, 19-Aug-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) |
| |
| Theorem | nnncan 8389 |
Cancellation law for subtraction. (Contributed by NM, 4-Sep-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 − 𝐶)) − 𝐶) = (𝐴 − 𝐵)) |
| |
| Theorem | nnncan1 8390 |
Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
(Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − (𝐴 − 𝐶)) = (𝐶 − 𝐵)) |
| |
| Theorem | nnncan2 8391 |
Cancellation law for subtraction. (Contributed by NM, 1-Oct-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) |
| |
| Theorem | npncan3 8392 |
Cancellation law for subtraction. (Contributed by Scott Fenton,
23-Jun-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐶 − 𝐴)) = (𝐶 − 𝐵)) |
| |
| Theorem | pnpcan 8393 |
Cancellation law for mixed addition and subtraction. (Contributed by NM,
4-Mar-2005.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 + 𝐶)) = (𝐵 − 𝐶)) |
| |
| Theorem | pnpcan2 8394 |
Cancellation law for mixed addition and subtraction. (Contributed by
Scott Fenton, 9-Jun-2006.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) − (𝐵 + 𝐶)) = (𝐴 − 𝐵)) |
| |
| Theorem | pnncan 8395 |
Cancellation law for mixed addition and subtraction. (Contributed by NM,
30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 − 𝐶)) = (𝐵 + 𝐶)) |
| |
| Theorem | ppncan 8396 |
Cancellation law for mixed addition and subtraction. (Contributed by NM,
30-Jun-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 − 𝐵)) = (𝐴 + 𝐶)) |
| |
| Theorem | addsub4 8397 |
Rearrangement of 4 terms in a mixed addition and subtraction.
(Contributed by NM, 4-Mar-2005.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 − 𝐶) + (𝐵 − 𝐷))) |
| |
| Theorem | subadd4 8398 |
Rearrangement of 4 terms in a mixed addition and subtraction.
(Contributed by NM, 24-Aug-2006.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 + 𝐷) − (𝐵 + 𝐶))) |
| |
| Theorem | sub4 8399 |
Rearrangement of 4 terms in a subtraction. (Contributed by NM,
23-Nov-2007.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 − 𝐶) − (𝐵 − 𝐷))) |
| |
| Theorem | neg0 8400 |
Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.)
|
| ⊢ -0 = 0 |