Theorem List for Intuitionistic Logic Explorer - 8301-8400 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | negdi2 8301 |
Distribution of negative over addition. (Contributed by NM,
1-Jan-2006.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 − 𝐵)) |
| |
| Theorem | negsubdi2 8302 |
Distribution of negative over subtraction. (Contributed by NM,
4-Oct-1999.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) |
| |
| Theorem | neg2sub 8303 |
Relationship between subtraction and negative. (Contributed by Paul
Chapman, 8-Oct-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 − -𝐵) = (𝐵 − 𝐴)) |
| |
| Theorem | renegcl 8304 |
Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.)
|
| ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| |
| Theorem | renegcli 8305 |
Closure law for negative of reals. (Note: this inference proof style
and the deduction theorem usage in renegcl 8304 is deprecated, but is
retained for its demonstration value.) (Contributed by NM,
17-Jan-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ -𝐴 ∈ ℝ |
| |
| Theorem | resubcli 8306 |
Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997.)
(Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐴 − 𝐵) ∈ ℝ |
| |
| Theorem | resubcl 8307 |
Closure law for subtraction of reals. (Contributed by NM,
20-Jan-1997.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
| |
| Theorem | negreb 8308 |
The negative of a real is real. (Contributed by NM, 11-Aug-1999.)
(Revised by Mario Carneiro, 14-Jul-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ)) |
| |
| Theorem | peano2cnm 8309 |
"Reverse" second Peano postulate analog for complex numbers: A
complex
number minus 1 is a complex number. (Contributed by Alexander van der
Vekens, 18-Mar-2018.)
|
| ⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈
ℂ) |
| |
| Theorem | peano2rem 8310 |
"Reverse" second Peano postulate analog for reals. (Contributed by
NM,
6-Feb-2007.)
|
| ⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈
ℝ) |
| |
| Theorem | negcli 8311 |
Closure law for negative. (Contributed by NM, 26-Nov-1994.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ -𝐴 ∈ ℂ |
| |
| Theorem | negidi 8312 |
Addition of a number and its negative. (Contributed by NM,
26-Nov-1994.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 + -𝐴) = 0 |
| |
| Theorem | negnegi 8313 |
A number is equal to the negative of its negative. Theorem I.4 of
[Apostol] p. 18. (Contributed by NM,
8-Feb-1995.) (Proof shortened by
Andrew Salmon, 22-Oct-2011.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ --𝐴 = 𝐴 |
| |
| Theorem | subidi 8314 |
Subtraction of a number from itself. (Contributed by NM,
26-Nov-1994.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 − 𝐴) = 0 |
| |
| Theorem | subid1i 8315 |
Identity law for subtraction. (Contributed by NM, 29-May-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 − 0) = 𝐴 |
| |
| Theorem | negne0bi 8316 |
A number is nonzero iff its negative is nonzero. (Contributed by NM,
10-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 ≠ 0 ↔ -𝐴 ≠ 0) |
| |
| Theorem | negrebi 8317 |
The negative of a real is real. (Contributed by NM, 11-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ) |
| |
| Theorem | negne0i 8318 |
The negative of a nonzero number is nonzero. (Contributed by NM,
30-Jul-2004.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠
0 ⇒ ⊢ -𝐴 ≠ 0 |
| |
| Theorem | subcli 8319 |
Closure law for subtraction. (Contributed by NM, 26-Nov-1994.)
(Revised by Mario Carneiro, 21-Dec-2013.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐴 − 𝐵) ∈ ℂ |
| |
| Theorem | pncan3i 8320 |
Subtraction and addition of equals. (Contributed by NM,
26-Nov-1994.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐴 + (𝐵 − 𝐴)) = 𝐵 |
| |
| Theorem | negsubi 8321 |
Relationship between subtraction and negative. Theorem I.3 of [Apostol]
p. 18. (Contributed by NM, 26-Nov-1994.) (Proof shortened by Andrew
Salmon, 22-Oct-2011.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐴 + -𝐵) = (𝐴 − 𝐵) |
| |
| Theorem | subnegi 8322 |
Relationship between subtraction and negative. (Contributed by NM,
1-Dec-2005.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐴 − -𝐵) = (𝐴 + 𝐵) |
| |
| Theorem | subeq0i 8323 |
If the difference between two numbers is zero, they are equal.
(Contributed by NM, 8-May-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵) |
| |
| Theorem | neg11i 8324 |
Negative is one-to-one. (Contributed by NM, 1-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (-𝐴 = -𝐵 ↔ 𝐴 = 𝐵) |
| |
| Theorem | negcon1i 8325 |
Negative contraposition law. (Contributed by NM, 25-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴) |
| |
| Theorem | negcon2i 8326 |
Negative contraposition law. (Contributed by NM, 25-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐴 = -𝐵 ↔ 𝐵 = -𝐴) |
| |
| Theorem | negdii 8327 |
Distribution of negative over addition. (Contributed by NM,
28-Jul-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ -(𝐴 + 𝐵) = (-𝐴 + -𝐵) |
| |
| Theorem | negsubdii 8328 |
Distribution of negative over subtraction. (Contributed by NM,
6-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ -(𝐴 − 𝐵) = (-𝐴 + 𝐵) |
| |
| Theorem | negsubdi2i 8329 |
Distribution of negative over subtraction. (Contributed by NM,
1-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ -(𝐴 − 𝐵) = (𝐵 − 𝐴) |
| |
| Theorem | subaddi 8330 |
Relationship between subtraction and addition. (Contributed by NM,
26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴) |
| |
| Theorem | subadd2i 8331 |
Relationship between subtraction and addition. (Contributed by NM,
15-Dec-2006.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴) |
| |
| Theorem | subaddrii 8332 |
Relationship between subtraction and addition. (Contributed by NM,
16-Dec-2006.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ (𝐵 + 𝐶) = 𝐴 ⇒ ⊢ (𝐴 − 𝐵) = 𝐶 |
| |
| Theorem | subsub23i 8333 |
Swap subtrahend and result of subtraction. (Contributed by NM,
7-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵) |
| |
| Theorem | addsubassi 8334 |
Associative-type law for subtraction and addition. (Contributed by NM,
16-Sep-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶)) |
| |
| Theorem | addsubi 8335 |
Law for subtraction and addition. (Contributed by NM, 6-Aug-2003.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵) |
| |
| Theorem | subcani 8336 |
Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 − 𝐵) = (𝐴 − 𝐶) ↔ 𝐵 = 𝐶) |
| |
| Theorem | subcan2i 8337 |
Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵) |
| |
| Theorem | pnncani 8338 |
Cancellation law for mixed addition and subtraction. (Contributed by
NM, 14-Jan-2006.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) − (𝐴 − 𝐶)) = (𝐵 + 𝐶) |
| |
| Theorem | addsub4i 8339 |
Rearrangement of 4 terms in a mixed addition and subtraction.
(Contributed by NM, 17-Oct-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 − 𝐶) + (𝐵 − 𝐷)) |
| |
| Theorem | 0reALT 8340 |
Alternate proof of 0re 8043. (Contributed by NM, 19-Feb-2005.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ 0 ∈ ℝ |
| |
| Theorem | negcld 8341 |
Closure law for negative. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → -𝐴 ∈ ℂ) |
| |
| Theorem | subidd 8342 |
Subtraction of a number from itself. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 − 𝐴) = 0) |
| |
| Theorem | subid1d 8343 |
Identity law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 − 0) = 𝐴) |
| |
| Theorem | negidd 8344 |
Addition of a number and its negative. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + -𝐴) = 0) |
| |
| Theorem | negnegd 8345 |
A number is equal to the negative of its negative. Theorem I.4 of
[Apostol] p. 18. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → --𝐴 = 𝐴) |
| |
| Theorem | negeq0d 8346 |
A number is zero iff its negative is zero. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 = 0 ↔ -𝐴 = 0)) |
| |
| Theorem | negne0bd 8347 |
A number is nonzero iff its negative is nonzero. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0)) |
| |
| Theorem | negcon1d 8348 |
Contraposition law for unary minus. Deduction form of negcon1 8295.
(Contributed by David Moews, 28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴)) |
| |
| Theorem | negcon1ad 8349 |
Contraposition law for unary minus. One-way deduction form of
negcon1 8295. (Contributed by David Moews, 28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → -𝐴 = 𝐵) ⇒ ⊢ (𝜑 → -𝐵 = 𝐴) |
| |
| Theorem | neg11ad 8350 |
The negatives of two complex numbers are equal iff they are equal.
Deduction form of neg11 8294. Generalization of neg11d 8366.
(Contributed by David Moews, 28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (-𝐴 = -𝐵 ↔ 𝐴 = 𝐵)) |
| |
| Theorem | negned 8351 |
If two complex numbers are unequal, so are their negatives.
Contrapositive of neg11d 8366. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → -𝐴 ≠ -𝐵) |
| |
| Theorem | negne0d 8352 |
The negative of a nonzero number is nonzero. See also negap0d 8675 which
is similar but for apart from zero rather than not equal to zero.
(Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → -𝐴 ≠ 0) |
| |
| Theorem | negrebd 8353 |
The negative of a real is real. (Contributed by Mario Carneiro,
28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → -𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| |
| Theorem | subcld 8354 |
Closure law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| |
| Theorem | pncand 8355 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| |
| Theorem | pncan2d 8356 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐴) = 𝐵) |
| |
| Theorem | pncan3d 8357 |
Subtraction and addition of equals. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
| |
| Theorem | npcand 8358 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| |
| Theorem | nncand 8359 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| |
| Theorem | negsubd 8360 |
Relationship between subtraction and negative. Theorem I.3 of [Apostol]
p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| |
| Theorem | subnegd 8361 |
Relationship between subtraction and negative. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
| |
| Theorem | subeq0d 8362 |
If the difference between two numbers is zero, they are equal.
(Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | subne0d 8363 |
Two unequal numbers have nonzero difference. See also subap0d 8688 which
is the same thing for apartness rather than negated equality.
(Contributed by Mario Carneiro, 1-Jan-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) |
| |
| Theorem | subeq0ad 8364 |
The difference of two complex numbers is zero iff they are equal.
Deduction form of subeq0 8269. Generalization of subeq0d 8362.
(Contributed by David Moews, 28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| |
| Theorem | subne0ad 8365 |
If the difference of two complex numbers is nonzero, they are unequal.
Converse of subne0d 8363. Contrapositive of subeq0bd 8422. (Contributed
by David Moews, 28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| |
| Theorem | neg11d 8366 |
If the difference between two numbers is zero, they are equal.
(Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → -𝐴 = -𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | negdid 8367 |
Distribution of negative over addition. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) |
| |
| Theorem | negdi2d 8368 |
Distribution of negative over addition. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → -(𝐴 + 𝐵) = (-𝐴 − 𝐵)) |
| |
| Theorem | negsubdid 8369 |
Distribution of negative over subtraction. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → -(𝐴 − 𝐵) = (-𝐴 + 𝐵)) |
| |
| Theorem | negsubdi2d 8370 |
Distribution of negative over subtraction. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) |
| |
| Theorem | neg2subd 8371 |
Relationship between subtraction and negative. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (-𝐴 − -𝐵) = (𝐵 − 𝐴)) |
| |
| Theorem | subaddd 8372 |
Relationship between subtraction and addition. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
| |
| Theorem | subadd2d 8373 |
Relationship between subtraction and addition. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴)) |
| |
| Theorem | addsubassd 8374 |
Associative-type law for subtraction and addition. (Contributed by
Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) |
| |
| Theorem | addsubd 8375 |
Law for subtraction and addition. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| |
| Theorem | subadd23d 8376 |
Commutative/associative law for addition and subtraction. (Contributed
by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐶) = (𝐴 + (𝐶 − 𝐵))) |
| |
| Theorem | addsub12d 8377 |
Commutative/associative law for addition and subtraction. (Contributed
by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + (𝐵 − 𝐶)) = (𝐵 + (𝐴 − 𝐶))) |
| |
| Theorem | npncand 8378 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐵 − 𝐶)) = (𝐴 − 𝐶)) |
| |
| Theorem | nppcand 8379 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (((𝐴 − 𝐵) + 𝐶) + 𝐵) = (𝐴 + 𝐶)) |
| |
| Theorem | nppcan2d 8380 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − (𝐵 + 𝐶)) + 𝐶) = (𝐴 − 𝐵)) |
| |
| Theorem | nppcan3d 8381 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐶 + 𝐵)) = (𝐴 + 𝐶)) |
| |
| Theorem | subsubd 8382 |
Law for double subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) |
| |
| Theorem | subsub2d 8383 |
Law for double subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = (𝐴 + (𝐶 − 𝐵))) |
| |
| Theorem | subsub3d 8384 |
Law for double subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 + 𝐶) − 𝐵)) |
| |
| Theorem | subsub4d 8385 |
Law for double subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) − 𝐶) = (𝐴 − (𝐵 + 𝐶))) |
| |
| Theorem | sub32d 8386 |
Swap the second and third terms in a double subtraction. (Contributed
by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) |
| |
| Theorem | nnncand 8387 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − (𝐵 − 𝐶)) − 𝐶) = (𝐴 − 𝐵)) |
| |
| Theorem | nnncan1d 8388 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) − (𝐴 − 𝐶)) = (𝐶 − 𝐵)) |
| |
| Theorem | nnncan2d 8389 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) |
| |
| Theorem | npncan3d 8390 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐶 − 𝐴)) = (𝐶 − 𝐵)) |
| |
| Theorem | pnpcand 8391 |
Cancellation law for mixed addition and subtraction. (Contributed by
Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐴 + 𝐶)) = (𝐵 − 𝐶)) |
| |
| Theorem | pnpcan2d 8392 |
Cancellation law for mixed addition and subtraction. (Contributed by
Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) − (𝐵 + 𝐶)) = (𝐴 − 𝐵)) |
| |
| Theorem | pnncand 8393 |
Cancellation law for mixed addition and subtraction. (Contributed by
Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐴 − 𝐶)) = (𝐵 + 𝐶)) |
| |
| Theorem | ppncand 8394 |
Cancellation law for mixed addition and subtraction. (Contributed by
Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 − 𝐵)) = (𝐴 + 𝐶)) |
| |
| Theorem | subcand 8395 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐴 − 𝐶)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) |
| |
| Theorem | subcan2d 8396 |
Cancellation law for subtraction. (Contributed by Mario Carneiro,
22-Sep-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐵 − 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | subcanad 8397 |
Cancellation law for subtraction. Deduction form of subcan 8298.
Generalization of subcand 8395. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐴 − 𝐶) ↔ 𝐵 = 𝐶)) |
| |
| Theorem | subneintrd 8398 |
Introducing subtraction on both sides of a statement of inequality.
Contrapositive of subcand 8395. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ≠ (𝐴 − 𝐶)) |
| |
| Theorem | subcan2ad 8399 |
Cancellation law for subtraction. Deduction form of subcan2 8268.
Generalization of subcan2d 8396. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | subneintr2d 8400 |
Introducing subtraction on both sides of a statement of inequality.
Contrapositive of subcan2d 8396. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐶) ≠ (𝐵 − 𝐶)) |