HomeHome Intuitionistic Logic Explorer
Theorem List (p. 84 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8301-8400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnegf1o 8301* Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
𝐹 = (𝑥𝐴 ↦ -𝑥)       (𝐴 ⊆ ℝ → 𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴})
 
4.3.3  Multiplication
 
Theoremkcnktkm1cn 8302 k times k minus 1 is a complex number if k is a complex number. (Contributed by Alexander van der Vekens, 11-Mar-2018.)
(𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ)
 
Theoremmuladd 8303 Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
 
Theoremsubdi 8304 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 18-Nov-2004.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)))
 
Theoremsubdir 8305 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 30-Dec-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
 
Theoremmul02 8306 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 10-Aug-1999.)
(𝐴 ∈ ℂ → (0 · 𝐴) = 0)
 
Theoremmul02lem2 8307 Zero times a real is zero. Although we prove it as a corollary of mul02 8306, the name is for consistency with the Metamath Proof Explorer which proves it before mul02 8306. (Contributed by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ ℝ → (0 · 𝐴) = 0)
 
Theoremmul01 8308 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 15-May-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ ℂ → (𝐴 · 0) = 0)
 
Theoremmul02i 8309 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ       (0 · 𝐴) = 0
 
Theoremmul01i 8310 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
𝐴 ∈ ℂ       (𝐴 · 0) = 0
 
Theoremmul02d 8311 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (0 · 𝐴) = 0)
 
Theoremmul01d 8312 Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 · 0) = 0)
 
Theoremine0 8313 The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.)
i ≠ 0
 
Theoremmulneg1 8314 Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))
 
Theoremmulneg2 8315 The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
 
Theoremmulneg12 8316 Swap the negative sign in a product. (Contributed by NM, 30-Jul-2004.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = (𝐴 · -𝐵))
 
Theoremmul2neg 8317 Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 30-Jul-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
 
Theoremsubmul2 8318 Convert a subtraction to addition using multiplication by a negative. (Contributed by NM, 2-Feb-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 · 𝐶)) = (𝐴 + (𝐵 · -𝐶)))
 
Theoremmulm1 8319 Product with minus one is negative. (Contributed by NM, 16-Nov-1999.)
(𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
 
Theoremmulsub 8320 Product of two differences. (Contributed by NM, 14-Jan-2006.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
 
Theoremmulsub2 8321 Swap the order of subtraction in a multiplication. (Contributed by Scott Fenton, 24-Jun-2013.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) · (𝐶𝐷)) = ((𝐵𝐴) · (𝐷𝐶)))
 
Theoremmulm1i 8322 Product with minus one is negative. (Contributed by NM, 31-Jul-1999.)
𝐴 ∈ ℂ       (-1 · 𝐴) = -𝐴
 
Theoremmulneg1i 8323 Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 10-Feb-1995.) (Revised by Mario Carneiro, 27-May-2016.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (-𝐴 · 𝐵) = -(𝐴 · 𝐵)
 
Theoremmulneg2i 8324 Product with negative is negative of product. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 · -𝐵) = -(𝐴 · 𝐵)
 
Theoremmul2negi 8325 Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-Feb-1995.) (Revised by Mario Carneiro, 27-May-2016.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (-𝐴 · -𝐵) = (𝐴 · 𝐵)
 
Theoremsubdii 8326 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 26-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐴 · (𝐵𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶))
 
Theoremsubdiri 8327 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 8-May-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))
 
Theoremmuladdi 8328 Product of two sums. (Contributed by NM, 17-May-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ       ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))
 
Theoremmulm1d 8329 Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (-1 · 𝐴) = -𝐴)
 
Theoremmulneg1d 8330 Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))
 
Theoremmulneg2d 8331 Product with negative is negative of product. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
 
Theoremmul2negd 8332 Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
 
Theoremsubdid 8333 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 · (𝐵𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)))
 
Theoremsubdird 8334 Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
 
Theoremmuladdd 8335 Product of two sums. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
 
Theoremmulsubd 8336 Product of two differences. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
 
Theoremmulsubfacd 8337 Multiplication followed by the subtraction of a factor. (Contributed by Alexander van der Vekens, 28-Aug-2018.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵) − 𝐵) = ((𝐴 − 1) · 𝐵))
 
4.3.4  Ordering on reals (cont.)
 
Theoremltadd2 8338 Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
 
Theoremltadd2i 8339 Addition to both sides of 'less than'. (Contributed by NM, 21-Jan-1997.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))
 
Theoremltadd2d 8340 Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
 
Theoremltadd2dd 8341 Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵))
 
Theoremltletrd 8342 Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐴 < 𝐶)
 
Theoremltaddneg 8343 Adding a negative number to another number decreases it. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐵 + 𝐴) < 𝐵))
 
Theoremltaddnegr 8344 Adding a negative number to another number decreases it. (Contributed by AV, 19-Mar-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐴 + 𝐵) < 𝐵))
 
Theoremlelttrdi 8345 If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
(𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))    &   (𝜑𝐵𝐶)       (𝜑 → (𝐴 < 𝐵𝐴 < 𝐶))
 
Theoremgt0ne0 8346 Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
 
Theoremlt0ne0 8347 A number which is less than zero is not zero. See also lt0ap0 8567 which is similar but for apartness. (Contributed by Stefan O'Rear, 13-Sep-2014.)
((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 ≠ 0)
 
Theoremltadd1 8348 Addition to both sides of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 12-Nov-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶)))
 
Theoremleadd1 8349 Addition to both sides of 'less than or equal to'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 18-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 + 𝐶) ≤ (𝐵 + 𝐶)))
 
Theoremleadd2 8350 Addition to both sides of 'less than or equal to'. (Contributed by NM, 26-Oct-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)))
 
Theoremltsubadd 8351 'Less than' relationship between subtraction and addition. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) < 𝐶𝐴 < (𝐶 + 𝐵)))
 
Theoremltsubadd2 8352 'Less than' relationship between subtraction and addition. (Contributed by NM, 21-Jan-1997.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) < 𝐶𝐴 < (𝐵 + 𝐶)))
 
Theoremlesubadd 8353 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 17-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵)))
 
Theoremlesubadd2 8354 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 10-Aug-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐵 + 𝐶)))
 
Theoremltaddsub 8355 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵)))
 
Theoremltaddsub2 8356 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐵 < (𝐶𝐴)))
 
Theoremleaddsub 8357 'Less than or equal to' relationship between addition and subtraction. (Contributed by NM, 6-Apr-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶𝐴 ≤ (𝐶𝐵)))
 
Theoremleaddsub2 8358 'Less than or equal to' relationship between and addition and subtraction. (Contributed by NM, 6-Apr-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶𝐵 ≤ (𝐶𝐴)))
 
Theoremsuble 8359 Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) ≤ 𝐶 ↔ (𝐴𝐶) ≤ 𝐵))
 
Theoremlesub 8360 Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ (𝐵𝐶) ↔ 𝐶 ≤ (𝐵𝐴)))
 
Theoremltsub23 8361 'Less than' relationship between subtraction and addition. (Contributed by NM, 4-Oct-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) < 𝐶 ↔ (𝐴𝐶) < 𝐵))
 
Theoremltsub13 8362 'Less than' relationship between subtraction and addition. (Contributed by NM, 17-Nov-2004.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < (𝐵𝐶) ↔ 𝐶 < (𝐵𝐴)))
 
Theoremle2add 8363 Adding both sides of two 'less than or equal to' relations. (Contributed by NM, 17-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)))
 
Theoremlt2add 8364 Adding both sides of two 'less than' relations. Theorem I.25 of [Apostol] p. 20. (Contributed by NM, 15-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷)))
 
Theoremltleadd 8365 Adding both sides of two orderings. (Contributed by NM, 23-Dec-2007.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶𝐵𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷)))
 
Theoremleltadd 8366 Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷)))
 
Theoremaddgt0 8367 The sum of 2 positive numbers is positive. (Contributed by NM, 1-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵))
 
Theoremaddgegt0 8368 The sum of nonnegative and positive numbers is positive. (Contributed by NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵))
 
Theoremaddgtge0 8369 The sum of nonnegative and positive numbers is positive. (Contributed by NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → 0 < (𝐴 + 𝐵))
 
Theoremaddge0 8370 The sum of 2 nonnegative numbers is nonnegative. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵))
 
Theoremltaddpos 8371 Adding a positive number to another number increases it. (Contributed by NM, 17-Nov-2004.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐵 + 𝐴)))
 
Theoremltaddpos2 8372 Adding a positive number to another number increases it. (Contributed by NM, 8-Apr-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐴 + 𝐵)))
 
Theoremltsubpos 8373 Subtracting a positive number from another number decreases it. (Contributed by NM, 17-Nov-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ (𝐵𝐴) < 𝐵))
 
Theoremposdif 8374 Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
 
Theoremlesub1 8375 Subtraction from both sides of 'less than or equal to'. (Contributed by NM, 13-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴𝐶) ≤ (𝐵𝐶)))
 
Theoremlesub2 8376 Subtraction of both sides of 'less than or equal to'. (Contributed by NM, 29-Sep-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐵 ↔ (𝐶𝐵) ≤ (𝐶𝐴)))
 
Theoremltsub1 8377 Subtraction from both sides of 'less than'. (Contributed by FL, 3-Jan-2008.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴𝐶) < (𝐵𝐶)))
 
Theoremltsub2 8378 Subtraction of both sides of 'less than'. (Contributed by NM, 29-Sep-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶𝐵) < (𝐶𝐴)))
 
Theoremlt2sub 8379 Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 14-Apr-2016.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶𝐷 < 𝐵) → (𝐴𝐵) < (𝐶𝐷)))
 
Theoremle2sub 8380 Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 14-Apr-2016.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐷𝐵) → (𝐴𝐵) ≤ (𝐶𝐷)))
 
Theoremltneg 8381 Negative of both sides of 'less than'. Theorem I.23 of [Apostol] p. 20. (Contributed by NM, 27-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴))
 
Theoremltnegcon1 8382 Contraposition of negative in 'less than'. (Contributed by NM, 8-Nov-2004.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 < 𝐵 ↔ -𝐵 < 𝐴))
 
Theoremltnegcon2 8383 Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 25-Feb-2015.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < -𝐵𝐵 < -𝐴))
 
Theoremleneg 8384 Negative of both sides of 'less than or equal to'. (Contributed by NM, 12-Sep-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ -𝐵 ≤ -𝐴))
 
Theoremlenegcon1 8385 Contraposition of negative in 'less than or equal to'. (Contributed by NM, 10-May-2004.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵𝐴))
 
Theoremlenegcon2 8386 Contraposition of negative in 'less than or equal to'. (Contributed by NM, 8-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ -𝐵𝐵 ≤ -𝐴))
 
Theoremlt0neg1 8387 Comparison of a number and its negative to zero. Theorem I.23 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
(𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
 
Theoremlt0neg2 8388 Comparison of a number and its negative to zero. (Contributed by NM, 10-May-2004.)
(𝐴 ∈ ℝ → (0 < 𝐴 ↔ -𝐴 < 0))
 
Theoremle0neg1 8389 Comparison of a number and its negative to zero. (Contributed by NM, 10-May-2004.)
(𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
 
Theoremle0neg2 8390 Comparison of a number and its negative to zero. (Contributed by NM, 24-Aug-1999.)
(𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0))
 
Theoremaddge01 8391 A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 21-Feb-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
 
Theoremaddge02 8392 A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 27-Jul-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵𝐴 ≤ (𝐵 + 𝐴)))
 
Theoremadd20 8393 Two nonnegative numbers are zero iff their sum is zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
 
Theoremsubge0 8394 Nonnegative subtraction. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))
 
Theoremsuble0 8395 Nonpositive subtraction. (Contributed by NM, 20-Mar-2008.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵) ≤ 0 ↔ 𝐴𝐵))
 
Theoremleaddle0 8396 The sum of a real number and a second real number is less then the real number iff the second real number is negative. (Contributed by Alexander van der Vekens, 30-May-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐴𝐵 ≤ 0))
 
Theoremsubge02 8397 Nonnegative subtraction. (Contributed by NM, 27-Jul-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (𝐴𝐵) ≤ 𝐴))
 
Theoremlesub0 8398 Lemma to show a nonnegative number is zero. (Contributed by NM, 8-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐵 ≤ (𝐵𝐴)) ↔ 𝐴 = 0))
 
Theoremmullt0 8399 The product of two negative numbers is positive. (Contributed by Jeff Hankins, 8-Jun-2009.)
(((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (𝐴 · 𝐵))
 
Theorem0le1 8400 0 is less than or equal to 1. (Contributed by Mario Carneiro, 29-Apr-2015.)
0 ≤ 1
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >