ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elovmporab GIF version

Theorem elovmporab 6176
Description: Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elovmporab.o 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑀𝜑})
elovmporab.v ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑀 ∈ V)
Assertion
Ref Expression
elovmporab (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑂(𝑥,𝑦,𝑧)   𝑍(𝑥,𝑦)

Proof of Theorem elovmporab
StepHypRef Expression
1 elovmporab.o . . 3 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑀𝜑})
21elmpocl 6171 . 2 (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
31a1i 9 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑀𝜑}))
4 sbceq1a 3018 . . . . . . . 8 (𝑦 = 𝑌 → (𝜑[𝑌 / 𝑦]𝜑))
5 sbceq1a 3018 . . . . . . . 8 (𝑥 = 𝑋 → ([𝑌 / 𝑦]𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
64, 5sylan9bbr 463 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
76adantl 277 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
87rabbidv 2768 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑧𝑀𝜑} = {𝑧𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑})
9 eqidd 2210 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑥 = 𝑋) → V = V)
10 simpl 109 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 ∈ V)
11 simpr 110 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑌 ∈ V)
12 elovmporab.v . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑀 ∈ V)
13 rabexg 4206 . . . . . 6 (𝑀 ∈ V → {𝑧𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V)
1412, 13syl 14 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {𝑧𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V)
15 nfcv 2352 . . . . . . 7 𝑥𝑋
1615nfel1 2363 . . . . . 6 𝑥 𝑋 ∈ V
17 nfcv 2352 . . . . . . 7 𝑥𝑌
1817nfel1 2363 . . . . . 6 𝑥 𝑌 ∈ V
1916, 18nfan 1591 . . . . 5 𝑥(𝑋 ∈ V ∧ 𝑌 ∈ V)
20 nfcv 2352 . . . . . . 7 𝑦𝑋
2120nfel1 2363 . . . . . 6 𝑦 𝑋 ∈ V
22 nfcv 2352 . . . . . . 7 𝑦𝑌
2322nfel1 2363 . . . . . 6 𝑦 𝑌 ∈ V
2421, 23nfan 1591 . . . . 5 𝑦(𝑋 ∈ V ∧ 𝑌 ∈ V)
25 nfsbc1v 3027 . . . . . 6 𝑥[𝑋 / 𝑥][𝑌 / 𝑦]𝜑
26 nfcv 2352 . . . . . 6 𝑥𝑀
2725, 26nfrabw 2692 . . . . 5 𝑥{𝑧𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}
28 nfsbc1v 3027 . . . . . . 7 𝑦[𝑌 / 𝑦]𝜑
2920, 28nfsbcw 3139 . . . . . 6 𝑦[𝑋 / 𝑥][𝑌 / 𝑦]𝜑
30 nfcv 2352 . . . . . 6 𝑦𝑀
3129, 30nfrabw 2692 . . . . 5 𝑦{𝑧𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}
323, 8, 9, 10, 11, 14, 19, 24, 20, 17, 27, 31ovmpodxf 6101 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = {𝑧𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑})
3332eleq2d 2279 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ (𝑋𝑂𝑌) ↔ 𝑍 ∈ {𝑧𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}))
34 df-3an 985 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑀) ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑍𝑀))
3534simplbi2com 1467 . . . 4 (𝑍𝑀 → ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑀)))
36 elrabi 2936 . . . 4 (𝑍 ∈ {𝑧𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} → 𝑍𝑀)
3735, 36syl11 31 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ {𝑧𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑀)))
3833, 37sylbid 150 . 2 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑀)))
392, 38mpcom 36 1 (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  {crab 2492  Vcvv 2779  [wsbc 3008  (class class class)co 5974  cmpo 5976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-setind 4606
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator