ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elovmporab1w GIF version

Theorem elovmporab1w 6177
Description: Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. Here, the base set of the class abstraction depends on the first operand. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by GG, 26-Jan-2024.)
Hypotheses
Ref Expression
elovmporab1w.o 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑥 / 𝑚𝑀𝜑})
elovmporab1w.v ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 / 𝑚𝑀 ∈ V)
Assertion
Ref Expression
elovmporab1w (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑧,𝑍   𝑥,𝑚,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑚)   𝑀(𝑚)   𝑂(𝑥,𝑦,𝑧,𝑚)   𝑋(𝑚)   𝑌(𝑚)   𝑍(𝑥,𝑦,𝑚)

Proof of Theorem elovmporab1w
StepHypRef Expression
1 elovmporab1w.o . . 3 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑥 / 𝑚𝑀𝜑})
21elmpocl 6171 . 2 (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
31a1i 9 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑥 / 𝑚𝑀𝜑}))
4 csbeq1 3107 . . . . . . 7 (𝑥 = 𝑋𝑥 / 𝑚𝑀 = 𝑋 / 𝑚𝑀)
54ad2antrl 490 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 / 𝑚𝑀 = 𝑋 / 𝑚𝑀)
6 sbceq1a 3018 . . . . . . . 8 (𝑦 = 𝑌 → (𝜑[𝑌 / 𝑦]𝜑))
7 sbceq1a 3018 . . . . . . . 8 (𝑥 = 𝑋 → ([𝑌 / 𝑦]𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
86, 7sylan9bbr 463 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
98adantl 277 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
105, 9rabeqbidv 2774 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑧𝑥 / 𝑚𝑀𝜑} = {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑})
11 eqidd 2210 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑥 = 𝑋) → V = V)
12 simpl 109 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 ∈ V)
13 simpr 110 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑌 ∈ V)
14 elovmporab1w.v . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 / 𝑚𝑀 ∈ V)
15 rabexg 4206 . . . . . 6 (𝑋 / 𝑚𝑀 ∈ V → {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V)
1614, 15syl 14 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V)
17 nfcv 2352 . . . . . . 7 𝑥𝑋
1817nfel1 2363 . . . . . 6 𝑥 𝑋 ∈ V
19 nfcv 2352 . . . . . . 7 𝑥𝑌
2019nfel1 2363 . . . . . 6 𝑥 𝑌 ∈ V
2118, 20nfan 1591 . . . . 5 𝑥(𝑋 ∈ V ∧ 𝑌 ∈ V)
22 nfcv 2352 . . . . . . 7 𝑦𝑋
2322nfel1 2363 . . . . . 6 𝑦 𝑋 ∈ V
24 nfcv 2352 . . . . . . 7 𝑦𝑌
2524nfel1 2363 . . . . . 6 𝑦 𝑌 ∈ V
2623, 25nfan 1591 . . . . 5 𝑦(𝑋 ∈ V ∧ 𝑌 ∈ V)
27 nfsbc1v 3027 . . . . . 6 𝑥[𝑋 / 𝑥][𝑌 / 𝑦]𝜑
28 nfcv 2352 . . . . . . 7 𝑥𝑀
2917, 28nfcsbw 3141 . . . . . 6 𝑥𝑋 / 𝑚𝑀
3027, 29nfrabw 2692 . . . . 5 𝑥{𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}
31 nfsbc1v 3027 . . . . . . 7 𝑦[𝑌 / 𝑦]𝜑
3222, 31nfsbcw 3139 . . . . . 6 𝑦[𝑋 / 𝑥][𝑌 / 𝑦]𝜑
33 nfcv 2352 . . . . . . 7 𝑦𝑀
3422, 33nfcsbw 3141 . . . . . 6 𝑦𝑋 / 𝑚𝑀
3532, 34nfrabw 2692 . . . . 5 𝑦{𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}
363, 10, 11, 12, 13, 16, 21, 26, 22, 19, 30, 35ovmpodxf 6101 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑})
3736eleq2d 2279 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ (𝑋𝑂𝑌) ↔ 𝑍 ∈ {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}))
38 df-3an 985 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀) ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑍𝑋 / 𝑚𝑀))
3938simplbi2com 1467 . . . 4 (𝑍𝑋 / 𝑚𝑀 → ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀)))
40 elrabi 2936 . . . 4 (𝑍 ∈ {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} → 𝑍𝑋 / 𝑚𝑀)
4139, 40syl11 31 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀)))
4237, 41sylbid 150 . 2 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀)))
432, 42mpcom 36 1 (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  {crab 2492  Vcvv 2779  [wsbc 3008  csb 3104  (class class class)co 5974  cmpo 5976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-setind 4606
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979
This theorem is referenced by:  elovmpowrd  11079
  Copyright terms: Public domain W3C validator