| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enqex | GIF version | ||
| Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) |
| Ref | Expression |
|---|---|
| enqex | ⊢ ~Q ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | niex 7445 | . . . 4 ⊢ N ∈ V | |
| 2 | 1, 1 | xpex 4798 | . . 3 ⊢ (N × N) ∈ V |
| 3 | 2, 2 | xpex 4798 | . 2 ⊢ ((N × N) × (N × N)) ∈ V |
| 4 | df-enq 7480 | . . 3 ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} | |
| 5 | opabssxp 4757 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} ⊆ ((N × N) × (N × N)) | |
| 6 | 4, 5 | eqsstri 3229 | . 2 ⊢ ~Q ⊆ ((N × N) × (N × N)) |
| 7 | 3, 6 | ssexi 4190 | 1 ⊢ ~Q ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 〈cop 3641 {copab 4112 × cxp 4681 (class class class)co 5957 Ncnpi 7405 ·N cmi 7407 ~Q ceq 7412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-opab 4114 df-iom 4647 df-xp 4689 df-ni 7437 df-enq 7480 |
| This theorem is referenced by: 1nq 7499 addpipqqs 7503 mulpipqqs 7506 ordpipqqs 7507 addclnq 7508 mulclnq 7509 dmaddpq 7512 dmmulpq 7513 recexnq 7523 ltexnqq 7541 prarloclemarch 7551 prarloclemarch2 7552 nnnq 7555 nqpnq0nq 7586 prarloclemlt 7626 prarloclemlo 7627 prarloclemcalc 7635 nqprm 7675 |
| Copyright terms: Public domain | W3C validator |