![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enqex | GIF version |
Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) |
Ref | Expression |
---|---|
enqex | ⊢ ~Q ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | niex 7372 | . . . 4 ⊢ N ∈ V | |
2 | 1, 1 | xpex 4774 | . . 3 ⊢ (N × N) ∈ V |
3 | 2, 2 | xpex 4774 | . 2 ⊢ ((N × N) × (N × N)) ∈ V |
4 | df-enq 7407 | . . 3 ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} | |
5 | opabssxp 4733 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} ⊆ ((N × N) × (N × N)) | |
6 | 4, 5 | eqsstri 3211 | . 2 ⊢ ~Q ⊆ ((N × N) × (N × N)) |
7 | 3, 6 | ssexi 4167 | 1 ⊢ ~Q ∈ V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 〈cop 3621 {copab 4089 × cxp 4657 (class class class)co 5918 Ncnpi 7332 ·N cmi 7334 ~Q ceq 7339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-opab 4091 df-iom 4623 df-xp 4665 df-ni 7364 df-enq 7407 |
This theorem is referenced by: 1nq 7426 addpipqqs 7430 mulpipqqs 7433 ordpipqqs 7434 addclnq 7435 mulclnq 7436 dmaddpq 7439 dmmulpq 7440 recexnq 7450 ltexnqq 7468 prarloclemarch 7478 prarloclemarch2 7479 nnnq 7482 nqpnq0nq 7513 prarloclemlt 7553 prarloclemlo 7554 prarloclemcalc 7562 nqprm 7602 |
Copyright terms: Public domain | W3C validator |