| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enqex | GIF version | ||
| Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) |
| Ref | Expression |
|---|---|
| enqex | ⊢ ~Q ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | niex 7495 | . . . 4 ⊢ N ∈ V | |
| 2 | 1, 1 | xpex 4833 | . . 3 ⊢ (N × N) ∈ V |
| 3 | 2, 2 | xpex 4833 | . 2 ⊢ ((N × N) × (N × N)) ∈ V |
| 4 | df-enq 7530 | . . 3 ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} | |
| 5 | opabssxp 4792 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} ⊆ ((N × N) × (N × N)) | |
| 6 | 4, 5 | eqsstri 3256 | . 2 ⊢ ~Q ⊆ ((N × N) × (N × N)) |
| 7 | 3, 6 | ssexi 4221 | 1 ⊢ ~Q ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 〈cop 3669 {copab 4143 × cxp 4716 (class class class)co 6000 Ncnpi 7455 ·N cmi 7457 ~Q ceq 7462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-opab 4145 df-iom 4682 df-xp 4724 df-ni 7487 df-enq 7530 |
| This theorem is referenced by: 1nq 7549 addpipqqs 7553 mulpipqqs 7556 ordpipqqs 7557 addclnq 7558 mulclnq 7559 dmaddpq 7562 dmmulpq 7563 recexnq 7573 ltexnqq 7591 prarloclemarch 7601 prarloclemarch2 7602 nnnq 7605 nqpnq0nq 7636 prarloclemlt 7676 prarloclemlo 7677 prarloclemcalc 7685 nqprm 7725 |
| Copyright terms: Public domain | W3C validator |