| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enqex | GIF version | ||
| Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) |
| Ref | Expression |
|---|---|
| enqex | ⊢ ~Q ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | niex 7398 | . . . 4 ⊢ N ∈ V | |
| 2 | 1, 1 | xpex 4779 | . . 3 ⊢ (N × N) ∈ V |
| 3 | 2, 2 | xpex 4779 | . 2 ⊢ ((N × N) × (N × N)) ∈ V |
| 4 | df-enq 7433 | . . 3 ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} | |
| 5 | opabssxp 4738 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} ⊆ ((N × N) × (N × N)) | |
| 6 | 4, 5 | eqsstri 3216 | . 2 ⊢ ~Q ⊆ ((N × N) × (N × N)) |
| 7 | 3, 6 | ssexi 4172 | 1 ⊢ ~Q ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 〈cop 3626 {copab 4094 × cxp 4662 (class class class)co 5925 Ncnpi 7358 ·N cmi 7360 ~Q ceq 7365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-opab 4096 df-iom 4628 df-xp 4670 df-ni 7390 df-enq 7433 |
| This theorem is referenced by: 1nq 7452 addpipqqs 7456 mulpipqqs 7459 ordpipqqs 7460 addclnq 7461 mulclnq 7462 dmaddpq 7465 dmmulpq 7466 recexnq 7476 ltexnqq 7494 prarloclemarch 7504 prarloclemarch2 7505 nnnq 7508 nqpnq0nq 7539 prarloclemlt 7579 prarloclemlo 7580 prarloclemcalc 7588 nqprm 7628 |
| Copyright terms: Public domain | W3C validator |