![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enqex | GIF version |
Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) |
Ref | Expression |
---|---|
enqex | ⊢ ~Q ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | niex 7374 | . . . 4 ⊢ N ∈ V | |
2 | 1, 1 | xpex 4775 | . . 3 ⊢ (N × N) ∈ V |
3 | 2, 2 | xpex 4775 | . 2 ⊢ ((N × N) × (N × N)) ∈ V |
4 | df-enq 7409 | . . 3 ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} | |
5 | opabssxp 4734 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} ⊆ ((N × N) × (N × N)) | |
6 | 4, 5 | eqsstri 3212 | . 2 ⊢ ~Q ⊆ ((N × N) × (N × N)) |
7 | 3, 6 | ssexi 4168 | 1 ⊢ ~Q ∈ V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 〈cop 3622 {copab 4090 × cxp 4658 (class class class)co 5919 Ncnpi 7334 ·N cmi 7336 ~Q ceq 7341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-opab 4092 df-iom 4624 df-xp 4666 df-ni 7366 df-enq 7409 |
This theorem is referenced by: 1nq 7428 addpipqqs 7432 mulpipqqs 7435 ordpipqqs 7436 addclnq 7437 mulclnq 7438 dmaddpq 7441 dmmulpq 7442 recexnq 7452 ltexnqq 7470 prarloclemarch 7480 prarloclemarch2 7481 nnnq 7484 nqpnq0nq 7515 prarloclemlt 7555 prarloclemlo 7556 prarloclemcalc 7564 nqprm 7604 |
Copyright terms: Public domain | W3C validator |