ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqex GIF version

Theorem enqex 7422
Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.)
Assertion
Ref Expression
enqex ~Q ∈ V

Proof of Theorem enqex
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 niex 7374 . . . 4 N ∈ V
21, 1xpex 4775 . . 3 (N × N) ∈ V
32, 2xpex 4775 . 2 ((N × N) × (N × N)) ∈ V
4 df-enq 7409 . . 3 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
5 opabssxp 4734 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} ⊆ ((N × N) × (N × N))
64, 5eqsstri 3212 . 2 ~Q ⊆ ((N × N) × (N × N))
73, 6ssexi 4168 1 ~Q ∈ V
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760  cop 3622  {copab 4090   × cxp 4658  (class class class)co 5919  Ncnpi 7334   ·N cmi 7336   ~Q ceq 7341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-opab 4092  df-iom 4624  df-xp 4666  df-ni 7366  df-enq 7409
This theorem is referenced by:  1nq  7428  addpipqqs  7432  mulpipqqs  7435  ordpipqqs  7436  addclnq  7437  mulclnq  7438  dmaddpq  7441  dmmulpq  7442  recexnq  7452  ltexnqq  7470  prarloclemarch  7480  prarloclemarch2  7481  nnnq  7484  nqpnq0nq  7515  prarloclemlt  7555  prarloclemlo  7556  prarloclemcalc  7564  nqprm  7604
  Copyright terms: Public domain W3C validator