| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nq0ex | GIF version | ||
| Description: The class of positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| Ref | Expression |
|---|---|
| nq0ex | ⊢ Q0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nq0 7580 | . 2 ⊢ Q0 = ((ω × N) / ~Q0 ) | |
| 2 | omex 4662 | . . . 4 ⊢ ω ∈ V | |
| 3 | niex 7467 | . . . 4 ⊢ N ∈ V | |
| 4 | 2, 3 | xpex 4811 | . . 3 ⊢ (ω × N) ∈ V |
| 5 | 4 | qsex 6709 | . 2 ⊢ ((ω × N) / ~Q0 ) ∈ V |
| 6 | 1, 5 | eqeltri 2282 | 1 ⊢ Q0 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 Vcvv 2779 ωcom 4659 × cxp 4694 / cqs 6649 Ncnpi 7427 ~Q0 ceq0 7441 Q0cnq0 7442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-qs 6656 df-ni 7459 df-nq0 7580 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |