ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0ex GIF version

Theorem nq0ex 7560
Description: The class of positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
Assertion
Ref Expression
nq0ex Q0 ∈ V

Proof of Theorem nq0ex
StepHypRef Expression
1 df-nq0 7545 . 2 Q0 = ((ω × N) / ~Q0 )
2 omex 4645 . . . 4 ω ∈ V
3 niex 7432 . . . 4 N ∈ V
42, 3xpex 4794 . . 3 (ω × N) ∈ V
54qsex 6686 . 2 ((ω × N) / ~Q0 ) ∈ V
61, 5eqeltri 2279 1 Q0 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2177  Vcvv 2773  ωcom 4642   × cxp 4677   / cqs 6626  Ncnpi 7392   ~Q0 ceq0 7406  Q0cnq0 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-qs 6633  df-ni 7424  df-nq0 7545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator