| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nq0ex | GIF version | ||
| Description: The class of positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| Ref | Expression |
|---|---|
| nq0ex | ⊢ Q0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nq0 7545 | . 2 ⊢ Q0 = ((ω × N) / ~Q0 ) | |
| 2 | omex 4645 | . . . 4 ⊢ ω ∈ V | |
| 3 | niex 7432 | . . . 4 ⊢ N ∈ V | |
| 4 | 2, 3 | xpex 4794 | . . 3 ⊢ (ω × N) ∈ V |
| 5 | 4 | qsex 6686 | . 2 ⊢ ((ω × N) / ~Q0 ) ∈ V |
| 6 | 1, 5 | eqeltri 2279 | 1 ⊢ Q0 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 ωcom 4642 × cxp 4677 / cqs 6626 Ncnpi 7392 ~Q0 ceq0 7406 Q0cnq0 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-qs 6633 df-ni 7424 df-nq0 7545 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |