ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0ex GIF version

Theorem nq0ex 7189
Description: The class of positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
Assertion
Ref Expression
nq0ex Q0 ∈ V

Proof of Theorem nq0ex
StepHypRef Expression
1 df-nq0 7174 . 2 Q0 = ((ω × N) / ~Q0 )
2 omex 4465 . . . 4 ω ∈ V
3 niex 7061 . . . 4 N ∈ V
42, 3xpex 4612 . . 3 (ω × N) ∈ V
54qsex 6437 . 2 ((ω × N) / ~Q0 ) ∈ V
61, 5eqeltri 2185 1 Q0 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 1461  Vcvv 2655  ωcom 4462   × cxp 4495   / cqs 6379  Ncnpi 7021   ~Q0 ceq0 7035  Q0cnq0 7036
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-iinf 4460
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-qs 6386  df-ni 7053  df-nq0 7174
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator