ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidmp GIF version

Theorem exmidmp 7206
Description: Excluded middle implies Markov's Principle (MP). (Contributed by Jim Kingdon, 4-Apr-2023.)
Assertion
Ref Expression
exmidmp (EXMID → ω ∈ Markov)

Proof of Theorem exmidmp
StepHypRef Expression
1 exmidlpo 7192 . 2 (EXMID → ω ∈ Omni)
2 omnimkv 7205 . 2 (ω ∈ Omni → ω ∈ Markov)
31, 2syl 14 1 (EXMID → ω ∈ Markov)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  EXMIDwem 4223  ωcom 4618  Omnicomni 7183  Markovcmarkov 7200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-iinf 4616
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-exmid 4224  df-id 4322  df-suc 4400  df-iom 4619  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-fv 5254  df-1o 6460  df-2o 6461  df-omni 7184  df-markov 7201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator