| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opelopab | GIF version | ||
| Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 16-May-1995.) | 
| Ref | Expression | 
|---|---|
| opelopab.1 | ⊢ 𝐴 ∈ V | 
| opelopab.2 | ⊢ 𝐵 ∈ V | 
| opelopab.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| opelopab.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| opelopab | ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opelopab.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelopab.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opelopab.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | opelopab.4 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | opelopabg 4302 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) | 
| 6 | 1, 2, 5 | mp2an 426 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 〈cop 3625 {copab 4093 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 | 
| This theorem is referenced by: opabid2 4797 dfres2 4998 xporderlem 6289 acfun 7274 ccfunen 7331 | 
| Copyright terms: Public domain | W3C validator |