Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopab GIF version

Theorem opelopab 4161
 Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 16-May-1995.)
Hypotheses
Ref Expression
opelopab.1 𝐴 ∈ V
opelopab.2 𝐵 ∈ V
opelopab.3 (𝑥 = 𝐴 → (𝜑𝜓))
opelopab.4 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
opelopab (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem opelopab
StepHypRef Expression
1 opelopab.1 . 2 𝐴 ∈ V
2 opelopab.2 . 2 𝐵 ∈ V
3 opelopab.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
4 opelopab.4 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
53, 4opelopabg 4158 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
61, 2, 5mp2an 420 1 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   = wceq 1314   ∈ wcel 1463  Vcvv 2658  ⟨cop 3498  {copab 3956 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099 This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-opab 3958 This theorem is referenced by:  opabid2  4638  dfres2  4839  xporderlem  6094  acfun  7027  ccfunen  7043
 Copyright terms: Public domain W3C validator