ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfres2 GIF version

Theorem dfres2 5010
Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
dfres2 (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem dfres2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4986 . 2 Rel (𝑅𝐴)
2 relopab 4803 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
3 vex 2774 . . . . 5 𝑤 ∈ V
43brres 4964 . . . 4 (𝑧(𝑅𝐴)𝑤 ↔ (𝑧𝑅𝑤𝑧𝐴))
5 df-br 4044 . . . 4 (𝑧(𝑅𝐴)𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ (𝑅𝐴))
6 ancom 266 . . . 4 ((𝑧𝑅𝑤𝑧𝐴) ↔ (𝑧𝐴𝑧𝑅𝑤))
74, 5, 63bitr3i 210 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝑅𝐴) ↔ (𝑧𝐴𝑧𝑅𝑤))
8 vex 2774 . . . 4 𝑧 ∈ V
9 eleq1 2267 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
10 breq1 4046 . . . . 5 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
119, 10anbi12d 473 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝑥𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑦)))
12 breq2 4047 . . . . 5 (𝑦 = 𝑤 → (𝑧𝑅𝑦𝑧𝑅𝑤))
1312anbi2d 464 . . . 4 (𝑦 = 𝑤 → ((𝑧𝐴𝑧𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑤)))
148, 3, 11, 13opelopab 4317 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)} ↔ (𝑧𝐴𝑧𝑅𝑤))
157, 14bitr4i 187 . 2 (⟨𝑧, 𝑤⟩ ∈ (𝑅𝐴) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)})
161, 2, 15eqrelriiv 4768 1 (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1372  wcel 2175  cop 3635   class class class wbr 4043  {copab 4103  cres 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-res 4686
This theorem is referenced by:  shftidt2  11085
  Copyright terms: Public domain W3C validator