| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfres2 | GIF version | ||
| Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
| Ref | Expression |
|---|---|
| dfres2 | ⊢ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 4996 | . 2 ⊢ Rel (𝑅 ↾ 𝐴) | |
| 2 | relopab 4812 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} | |
| 3 | vex 2776 | . . . . 5 ⊢ 𝑤 ∈ V | |
| 4 | 3 | brres 4974 | . . . 4 ⊢ (𝑧(𝑅 ↾ 𝐴)𝑤 ↔ (𝑧𝑅𝑤 ∧ 𝑧 ∈ 𝐴)) |
| 5 | df-br 4052 | . . . 4 ⊢ (𝑧(𝑅 ↾ 𝐴)𝑤 ↔ 〈𝑧, 𝑤〉 ∈ (𝑅 ↾ 𝐴)) | |
| 6 | ancom 266 | . . . 4 ⊢ ((𝑧𝑅𝑤 ∧ 𝑧 ∈ 𝐴) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) | |
| 7 | 4, 5, 6 | 3bitr3i 210 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
| 8 | vex 2776 | . . . 4 ⊢ 𝑧 ∈ V | |
| 9 | eleq1 2269 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
| 10 | breq1 4054 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑧𝑅𝑦)) | |
| 11 | 9, 10 | anbi12d 473 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) |
| 12 | breq2 4055 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑤)) | |
| 13 | 12 | anbi2d 464 | . . . 4 ⊢ (𝑦 = 𝑤 → ((𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) |
| 14 | 8, 3, 11, 13 | opelopab 4326 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
| 15 | 7, 14 | bitr4i 187 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ (𝑅 ↾ 𝐴) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)}) |
| 16 | 1, 2, 15 | eqrelriiv 4777 | 1 ⊢ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 〈cop 3641 class class class wbr 4051 {copab 4112 ↾ cres 4685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-rel 4690 df-res 4695 |
| This theorem is referenced by: shftidt2 11218 |
| Copyright terms: Public domain | W3C validator |