ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfres2 GIF version

Theorem dfres2 4998
Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
dfres2 (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem dfres2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4974 . 2 Rel (𝑅𝐴)
2 relopab 4792 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
3 vex 2766 . . . . 5 𝑤 ∈ V
43brres 4952 . . . 4 (𝑧(𝑅𝐴)𝑤 ↔ (𝑧𝑅𝑤𝑧𝐴))
5 df-br 4034 . . . 4 (𝑧(𝑅𝐴)𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ (𝑅𝐴))
6 ancom 266 . . . 4 ((𝑧𝑅𝑤𝑧𝐴) ↔ (𝑧𝐴𝑧𝑅𝑤))
74, 5, 63bitr3i 210 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝑅𝐴) ↔ (𝑧𝐴𝑧𝑅𝑤))
8 vex 2766 . . . 4 𝑧 ∈ V
9 eleq1 2259 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
10 breq1 4036 . . . . 5 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
119, 10anbi12d 473 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝑥𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑦)))
12 breq2 4037 . . . . 5 (𝑦 = 𝑤 → (𝑧𝑅𝑦𝑧𝑅𝑤))
1312anbi2d 464 . . . 4 (𝑦 = 𝑤 → ((𝑧𝐴𝑧𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑤)))
148, 3, 11, 13opelopab 4306 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)} ↔ (𝑧𝐴𝑧𝑅𝑤))
157, 14bitr4i 187 . 2 (⟨𝑧, 𝑤⟩ ∈ (𝑅𝐴) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)})
161, 2, 15eqrelriiv 4757 1 (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2167  cop 3625   class class class wbr 4033  {copab 4093  cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-res 4675
This theorem is referenced by:  shftidt2  10997
  Copyright terms: Public domain W3C validator