![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfres2 | GIF version |
Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
dfres2 | ⊢ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4805 | . 2 ⊢ Rel (𝑅 ↾ 𝐴) | |
2 | relopab 4626 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} | |
3 | vex 2660 | . . . . 5 ⊢ 𝑤 ∈ V | |
4 | 3 | brres 4783 | . . . 4 ⊢ (𝑧(𝑅 ↾ 𝐴)𝑤 ↔ (𝑧𝑅𝑤 ∧ 𝑧 ∈ 𝐴)) |
5 | df-br 3896 | . . . 4 ⊢ (𝑧(𝑅 ↾ 𝐴)𝑤 ↔ 〈𝑧, 𝑤〉 ∈ (𝑅 ↾ 𝐴)) | |
6 | ancom 264 | . . . 4 ⊢ ((𝑧𝑅𝑤 ∧ 𝑧 ∈ 𝐴) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) | |
7 | 4, 5, 6 | 3bitr3i 209 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
8 | vex 2660 | . . . 4 ⊢ 𝑧 ∈ V | |
9 | eleq1 2177 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
10 | breq1 3898 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑧𝑅𝑦)) | |
11 | 9, 10 | anbi12d 462 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) |
12 | breq2 3899 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑤)) | |
13 | 12 | anbi2d 457 | . . . 4 ⊢ (𝑦 = 𝑤 → ((𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) |
14 | 8, 3, 11, 13 | opelopab 4153 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
15 | 7, 14 | bitr4i 186 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ (𝑅 ↾ 𝐴) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)}) |
16 | 1, 2, 15 | eqrelriiv 4593 | 1 ⊢ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1314 ∈ wcel 1463 〈cop 3496 class class class wbr 3895 {copab 3948 ↾ cres 4501 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-br 3896 df-opab 3950 df-xp 4505 df-rel 4506 df-res 4511 |
This theorem is referenced by: shftidt2 10497 |
Copyright terms: Public domain | W3C validator |