ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfres2 GIF version

Theorem dfres2 4936
Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
dfres2 (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem dfres2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4912 . 2 Rel (𝑅𝐴)
2 relopab 4731 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
3 vex 2729 . . . . 5 𝑤 ∈ V
43brres 4890 . . . 4 (𝑧(𝑅𝐴)𝑤 ↔ (𝑧𝑅𝑤𝑧𝐴))
5 df-br 3983 . . . 4 (𝑧(𝑅𝐴)𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ (𝑅𝐴))
6 ancom 264 . . . 4 ((𝑧𝑅𝑤𝑧𝐴) ↔ (𝑧𝐴𝑧𝑅𝑤))
74, 5, 63bitr3i 209 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝑅𝐴) ↔ (𝑧𝐴𝑧𝑅𝑤))
8 vex 2729 . . . 4 𝑧 ∈ V
9 eleq1 2229 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
10 breq1 3985 . . . . 5 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
119, 10anbi12d 465 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝑥𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑦)))
12 breq2 3986 . . . . 5 (𝑦 = 𝑤 → (𝑧𝑅𝑦𝑧𝑅𝑤))
1312anbi2d 460 . . . 4 (𝑦 = 𝑤 → ((𝑧𝐴𝑧𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑤)))
148, 3, 11, 13opelopab 4249 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)} ↔ (𝑧𝐴𝑧𝑅𝑤))
157, 14bitr4i 186 . 2 (⟨𝑧, 𝑤⟩ ∈ (𝑅𝐴) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)})
161, 2, 15eqrelriiv 4698 1 (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wcel 2136  cop 3579   class class class wbr 3982  {copab 4042  cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-res 4616
This theorem is referenced by:  shftidt2  10774
  Copyright terms: Public domain W3C validator