ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xporderlem GIF version

Theorem xporderlem 6284
Description: Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.)
Hypothesis
Ref Expression
xporderlem.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}
Assertion
Ref Expression
xporderlem (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ (((𝑎𝐴𝑐𝐴) ∧ (𝑏𝐵𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑎,𝑦   𝑥,𝑏,𝑦   𝑥,𝑐,𝑦   𝑥,𝑑,𝑦
Allowed substitution hints:   𝐴(𝑎,𝑏,𝑐,𝑑)   𝐵(𝑎,𝑏,𝑐,𝑑)   𝑅(𝑎,𝑏,𝑐,𝑑)   𝑆(𝑎,𝑏,𝑐,𝑑)   𝑇(𝑥,𝑦,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem xporderlem
StepHypRef Expression
1 df-br 4030 . . 3 (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∈ 𝑇)
2 xporderlem.1 . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}
32eleq2i 2260 . . 3 (⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∈ 𝑇 ↔ ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))})
41, 3bitri 184 . 2 (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))})
5 vex 2763 . . . 4 𝑎 ∈ V
6 vex 2763 . . . 4 𝑏 ∈ V
75, 6opex 4258 . . 3 𝑎, 𝑏⟩ ∈ V
8 vex 2763 . . . 4 𝑐 ∈ V
9 vex 2763 . . . 4 𝑑 ∈ V
108, 9opex 4258 . . 3 𝑐, 𝑑⟩ ∈ V
11 eleq1 2256 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥 ∈ (𝐴 × 𝐵) ↔ ⟨𝑎, 𝑏⟩ ∈ (𝐴 × 𝐵)))
12 opelxp 4689 . . . . . 6 (⟨𝑎, 𝑏⟩ ∈ (𝐴 × 𝐵) ↔ (𝑎𝐴𝑏𝐵))
1311, 12bitrdi 196 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥 ∈ (𝐴 × 𝐵) ↔ (𝑎𝐴𝑏𝐵)))
1413anbi1d 465 . . . 4 (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ↔ ((𝑎𝐴𝑏𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵))))
155, 6op1std 6201 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → (1st𝑥) = 𝑎)
1615breq1d 4039 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → ((1st𝑥)𝑅(1st𝑦) ↔ 𝑎𝑅(1st𝑦)))
1715eqeq1d 2202 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → ((1st𝑥) = (1st𝑦) ↔ 𝑎 = (1st𝑦)))
185, 6op2ndd 6202 . . . . . . 7 (𝑥 = ⟨𝑎, 𝑏⟩ → (2nd𝑥) = 𝑏)
1918breq1d 4039 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → ((2nd𝑥)𝑆(2nd𝑦) ↔ 𝑏𝑆(2nd𝑦)))
2017, 19anbi12d 473 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦)) ↔ (𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦))))
2116, 20orbi12d 794 . . . 4 (𝑥 = ⟨𝑎, 𝑏⟩ → (((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))) ↔ (𝑎𝑅(1st𝑦) ∨ (𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦)))))
2214, 21anbi12d 473 . . 3 (𝑥 = ⟨𝑎, 𝑏⟩ → (((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦)))) ↔ (((𝑎𝐴𝑏𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ (𝑎𝑅(1st𝑦) ∨ (𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦))))))
23 eleq1 2256 . . . . . 6 (𝑦 = ⟨𝑐, 𝑑⟩ → (𝑦 ∈ (𝐴 × 𝐵) ↔ ⟨𝑐, 𝑑⟩ ∈ (𝐴 × 𝐵)))
24 opelxp 4689 . . . . . 6 (⟨𝑐, 𝑑⟩ ∈ (𝐴 × 𝐵) ↔ (𝑐𝐴𝑑𝐵))
2523, 24bitrdi 196 . . . . 5 (𝑦 = ⟨𝑐, 𝑑⟩ → (𝑦 ∈ (𝐴 × 𝐵) ↔ (𝑐𝐴𝑑𝐵)))
2625anbi2d 464 . . . 4 (𝑦 = ⟨𝑐, 𝑑⟩ → (((𝑎𝐴𝑏𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵))))
278, 9op1std 6201 . . . . . 6 (𝑦 = ⟨𝑐, 𝑑⟩ → (1st𝑦) = 𝑐)
2827breq2d 4041 . . . . 5 (𝑦 = ⟨𝑐, 𝑑⟩ → (𝑎𝑅(1st𝑦) ↔ 𝑎𝑅𝑐))
2927eqeq2d 2205 . . . . . 6 (𝑦 = ⟨𝑐, 𝑑⟩ → (𝑎 = (1st𝑦) ↔ 𝑎 = 𝑐))
308, 9op2ndd 6202 . . . . . . 7 (𝑦 = ⟨𝑐, 𝑑⟩ → (2nd𝑦) = 𝑑)
3130breq2d 4041 . . . . . 6 (𝑦 = ⟨𝑐, 𝑑⟩ → (𝑏𝑆(2nd𝑦) ↔ 𝑏𝑆𝑑))
3229, 31anbi12d 473 . . . . 5 (𝑦 = ⟨𝑐, 𝑑⟩ → ((𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦)) ↔ (𝑎 = 𝑐𝑏𝑆𝑑)))
3328, 32orbi12d 794 . . . 4 (𝑦 = ⟨𝑐, 𝑑⟩ → ((𝑎𝑅(1st𝑦) ∨ (𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦))) ↔ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
3426, 33anbi12d 473 . . 3 (𝑦 = ⟨𝑐, 𝑑⟩ → ((((𝑎𝐴𝑏𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ (𝑎𝑅(1st𝑦) ∨ (𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦)))) ↔ (((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑)))))
357, 10, 22, 34opelopab 4302 . 2 (⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))} ↔ (((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
36 an4 586 . . 3 (((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵)) ↔ ((𝑎𝐴𝑐𝐴) ∧ (𝑏𝐵𝑑𝐵)))
3736anbi1i 458 . 2 ((((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))) ↔ (((𝑎𝐴𝑐𝐴) ∧ (𝑏𝐵𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
384, 35, 373bitri 206 1 (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ (((𝑎𝐴𝑐𝐴) ∧ (𝑏𝐵𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  cop 3621   class class class wbr 4029  {copab 4089   × cxp 4657  cfv 5254  1st c1st 6191  2nd c2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fv 5262  df-1st 6193  df-2nd 6194
This theorem is referenced by:  poxp  6285
  Copyright terms: Public domain W3C validator