Proof of Theorem xporderlem
Step | Hyp | Ref
| Expression |
1 | | df-br 3983 |
. . 3
⊢
(〈𝑎, 𝑏〉𝑇〈𝑐, 𝑑〉 ↔ 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∈ 𝑇) |
2 | | xporderlem.1 |
. . . 4
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥)𝑆(2nd ‘𝑦))))} |
3 | 2 | eleq2i 2233 |
. . 3
⊢
(〈〈𝑎,
𝑏〉, 〈𝑐, 𝑑〉〉 ∈ 𝑇 ↔ 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥)𝑆(2nd ‘𝑦))))}) |
4 | 1, 3 | bitri 183 |
. 2
⊢
(〈𝑎, 𝑏〉𝑇〈𝑐, 𝑑〉 ↔ 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥)𝑆(2nd ‘𝑦))))}) |
5 | | vex 2729 |
. . . 4
⊢ 𝑎 ∈ V |
6 | | vex 2729 |
. . . 4
⊢ 𝑏 ∈ V |
7 | 5, 6 | opex 4207 |
. . 3
⊢
〈𝑎, 𝑏〉 ∈ V |
8 | | vex 2729 |
. . . 4
⊢ 𝑐 ∈ V |
9 | | vex 2729 |
. . . 4
⊢ 𝑑 ∈ V |
10 | 8, 9 | opex 4207 |
. . 3
⊢
〈𝑐, 𝑑〉 ∈ V |
11 | | eleq1 2229 |
. . . . . 6
⊢ (𝑥 = 〈𝑎, 𝑏〉 → (𝑥 ∈ (𝐴 × 𝐵) ↔ 〈𝑎, 𝑏〉 ∈ (𝐴 × 𝐵))) |
12 | | opelxp 4634 |
. . . . . 6
⊢
(〈𝑎, 𝑏〉 ∈ (𝐴 × 𝐵) ↔ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) |
13 | 11, 12 | bitrdi 195 |
. . . . 5
⊢ (𝑥 = 〈𝑎, 𝑏〉 → (𝑥 ∈ (𝐴 × 𝐵) ↔ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵))) |
14 | 13 | anbi1d 461 |
. . . 4
⊢ (𝑥 = 〈𝑎, 𝑏〉 → ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ↔ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)))) |
15 | 5, 6 | op1std 6116 |
. . . . . 6
⊢ (𝑥 = 〈𝑎, 𝑏〉 → (1st ‘𝑥) = 𝑎) |
16 | 15 | breq1d 3992 |
. . . . 5
⊢ (𝑥 = 〈𝑎, 𝑏〉 → ((1st ‘𝑥)𝑅(1st ‘𝑦) ↔ 𝑎𝑅(1st ‘𝑦))) |
17 | 15 | eqeq1d 2174 |
. . . . . 6
⊢ (𝑥 = 〈𝑎, 𝑏〉 → ((1st ‘𝑥) = (1st ‘𝑦) ↔ 𝑎 = (1st ‘𝑦))) |
18 | 5, 6 | op2ndd 6117 |
. . . . . . 7
⊢ (𝑥 = 〈𝑎, 𝑏〉 → (2nd ‘𝑥) = 𝑏) |
19 | 18 | breq1d 3992 |
. . . . . 6
⊢ (𝑥 = 〈𝑎, 𝑏〉 → ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ↔ 𝑏𝑆(2nd ‘𝑦))) |
20 | 17, 19 | anbi12d 465 |
. . . . 5
⊢ (𝑥 = 〈𝑎, 𝑏〉 → (((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥)𝑆(2nd ‘𝑦)) ↔ (𝑎 = (1st ‘𝑦) ∧ 𝑏𝑆(2nd ‘𝑦)))) |
21 | 16, 20 | orbi12d 783 |
. . . 4
⊢ (𝑥 = 〈𝑎, 𝑏〉 → (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥)𝑆(2nd ‘𝑦))) ↔ (𝑎𝑅(1st ‘𝑦) ∨ (𝑎 = (1st ‘𝑦) ∧ 𝑏𝑆(2nd ‘𝑦))))) |
22 | 14, 21 | anbi12d 465 |
. . 3
⊢ (𝑥 = 〈𝑎, 𝑏〉 → (((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥)𝑆(2nd ‘𝑦)))) ↔ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ (𝑎𝑅(1st ‘𝑦) ∨ (𝑎 = (1st ‘𝑦) ∧ 𝑏𝑆(2nd ‘𝑦)))))) |
23 | | eleq1 2229 |
. . . . . 6
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (𝑦 ∈ (𝐴 × 𝐵) ↔ 〈𝑐, 𝑑〉 ∈ (𝐴 × 𝐵))) |
24 | | opelxp 4634 |
. . . . . 6
⊢
(〈𝑐, 𝑑〉 ∈ (𝐴 × 𝐵) ↔ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) |
25 | 23, 24 | bitrdi 195 |
. . . . 5
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (𝑦 ∈ (𝐴 × 𝐵) ↔ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵))) |
26 | 25 | anbi2d 460 |
. . . 4
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ↔ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)))) |
27 | 8, 9 | op1std 6116 |
. . . . . 6
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (1st ‘𝑦) = 𝑐) |
28 | 27 | breq2d 3994 |
. . . . 5
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (𝑎𝑅(1st ‘𝑦) ↔ 𝑎𝑅𝑐)) |
29 | 27 | eqeq2d 2177 |
. . . . . 6
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (𝑎 = (1st ‘𝑦) ↔ 𝑎 = 𝑐)) |
30 | 8, 9 | op2ndd 6117 |
. . . . . . 7
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (2nd ‘𝑦) = 𝑑) |
31 | 30 | breq2d 3994 |
. . . . . 6
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (𝑏𝑆(2nd ‘𝑦) ↔ 𝑏𝑆𝑑)) |
32 | 29, 31 | anbi12d 465 |
. . . . 5
⊢ (𝑦 = 〈𝑐, 𝑑〉 → ((𝑎 = (1st ‘𝑦) ∧ 𝑏𝑆(2nd ‘𝑦)) ↔ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))) |
33 | 28, 32 | orbi12d 783 |
. . . 4
⊢ (𝑦 = 〈𝑐, 𝑑〉 → ((𝑎𝑅(1st ‘𝑦) ∨ (𝑎 = (1st ‘𝑦) ∧ 𝑏𝑆(2nd ‘𝑦))) ↔ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)))) |
34 | 26, 33 | anbi12d 465 |
. . 3
⊢ (𝑦 = 〈𝑐, 𝑑〉 → ((((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ (𝑎𝑅(1st ‘𝑦) ∨ (𝑎 = (1st ‘𝑦) ∧ 𝑏𝑆(2nd ‘𝑦)))) ↔ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))))) |
35 | 7, 10, 22, 34 | opelopab 4249 |
. 2
⊢
(〈〈𝑎,
𝑏〉, 〈𝑐, 𝑑〉〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥)𝑆(2nd ‘𝑦))))} ↔ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)))) |
36 | | an4 576 |
. . 3
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) ↔ ((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) |
37 | 36 | anbi1i 454 |
. 2
⊢ ((((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))) ↔ (((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)))) |
38 | 4, 35, 37 | 3bitri 205 |
1
⊢
(〈𝑎, 𝑏〉𝑇〈𝑐, 𝑑〉 ↔ (((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)))) |