Proof of Theorem isringd
Step | Hyp | Ref
| Expression |
1 | | isringd.g |
. 2
⊢ (𝜑 → 𝑅 ∈ Grp) |
2 | | isringd.b |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
3 | | eqid 2175 |
. . . . . 6
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
4 | | eqid 2175 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
5 | 3, 4 | mgpbasg 12930 |
. . . . 5
⊢ (𝑅 ∈ Grp →
(Base‘𝑅) =
(Base‘(mulGrp‘𝑅))) |
6 | 1, 5 | syl 14 |
. . . 4
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(mulGrp‘𝑅))) |
7 | 2, 6 | eqtrd 2208 |
. . 3
⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝑅))) |
8 | | isringd.t |
. . . 4
⊢ (𝜑 → · =
(.r‘𝑅)) |
9 | | eqid 2175 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
10 | 3, 9 | mgpplusgg 12929 |
. . . . 5
⊢ (𝑅 ∈ Grp →
(.r‘𝑅) =
(+g‘(mulGrp‘𝑅))) |
11 | 1, 10 | syl 14 |
. . . 4
⊢ (𝜑 → (.r‘𝑅) =
(+g‘(mulGrp‘𝑅))) |
12 | 8, 11 | eqtrd 2208 |
. . 3
⊢ (𝜑 → · =
(+g‘(mulGrp‘𝑅))) |
13 | | isringd.c |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
14 | | isringd.a |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
15 | | isringd.u |
. . 3
⊢ (𝜑 → 1 ∈ 𝐵) |
16 | | isringd.i |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) |
17 | | isringd.h |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) |
18 | 7, 12, 13, 14, 15, 16, 17 | ismndd 12703 |
. 2
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
19 | 2 | eleq2d 2245 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝑅))) |
20 | 2 | eleq2d 2245 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝑅))) |
21 | 2 | eleq2d 2245 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ (Base‘𝑅))) |
22 | 19, 20, 21 | 3anbi123d 1312 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)))) |
23 | 22 | biimpar 297 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) |
24 | | isringd.d |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
25 | 8 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → · =
(.r‘𝑅)) |
26 | | eqidd 2176 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 = 𝑥) |
27 | | isringd.p |
. . . . . . . 8
⊢ (𝜑 → + =
(+g‘𝑅)) |
28 | 27 | oveqdr 5893 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 + 𝑧) = (𝑦(+g‘𝑅)𝑧)) |
29 | 25, 26, 28 | oveq123d 5886 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = (𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧))) |
30 | 27 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → + =
(+g‘𝑅)) |
31 | 8 | oveqdr 5893 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · 𝑦) = (𝑥(.r‘𝑅)𝑦)) |
32 | 8 | oveqdr 5893 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · 𝑧) = (𝑥(.r‘𝑅)𝑧)) |
33 | 30, 31, 32 | oveq123d 5886 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) + (𝑥 · 𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧))) |
34 | 24, 29, 33 | 3eqtr3d 2216 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧))) |
35 | | isringd.e |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
36 | 27 | oveqdr 5893 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 + 𝑦) = (𝑥(+g‘𝑅)𝑦)) |
37 | | eqidd 2176 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 = 𝑧) |
38 | 25, 36, 37 | oveq123d 5886 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧)) |
39 | 8 | oveqdr 5893 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 · 𝑧) = (𝑦(.r‘𝑅)𝑧)) |
40 | 30, 32, 39 | oveq123d 5886 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑧) + (𝑦 · 𝑧)) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) |
41 | 35, 38, 40 | 3eqtr3d 2216 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) |
42 | 34, 41 | jca 306 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧)))) |
43 | 23, 42 | syldan 282 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧)))) |
44 | 43 | ralrimivvva 2558 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧)))) |
45 | | eqid 2175 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑅) |
46 | 4, 3, 45, 9 | isring 12976 |
. 2
⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧
(mulGrp‘𝑅) ∈ Mnd
∧ ∀𝑥 ∈
(Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
47 | 1, 18, 44, 46 | syl3anbrc 1181 |
1
⊢ (𝜑 → 𝑅 ∈ Ring) |