| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngidpropdg | GIF version | ||
| Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| rngidpropdg.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| rngidpropdg.l | ⊢ (𝜑 → 𝐿 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| rngidpropdg | ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | rngidpropdg.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 3 | eqid 2204 | . . . . . 6 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
| 4 | eqid 2204 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 5 | 3, 4 | mgpbasg 13606 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾))) |
| 6 | 2, 5 | syl 14 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾))) |
| 7 | 1, 6 | eqtrd 2237 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐾))) |
| 8 | rngidpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 9 | rngidpropdg.l | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ 𝑊) | |
| 10 | eqid 2204 | . . . . . 6 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
| 11 | eqid 2204 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 12 | 10, 11 | mgpbasg 13606 | . . . . 5 ⊢ (𝐿 ∈ 𝑊 → (Base‘𝐿) = (Base‘(mulGrp‘𝐿))) |
| 13 | 9, 12 | syl 14 | . . . 4 ⊢ (𝜑 → (Base‘𝐿) = (Base‘(mulGrp‘𝐿))) |
| 14 | 8, 13 | eqtrd 2237 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐿))) |
| 15 | 3 | mgpex 13605 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → (mulGrp‘𝐾) ∈ V) |
| 16 | 2, 15 | syl 14 | . . 3 ⊢ (𝜑 → (mulGrp‘𝐾) ∈ V) |
| 17 | 10 | mgpex 13605 | . . . 4 ⊢ (𝐿 ∈ 𝑊 → (mulGrp‘𝐿) ∈ V) |
| 18 | 9, 17 | syl 14 | . . 3 ⊢ (𝜑 → (mulGrp‘𝐿) ∈ V) |
| 19 | rngidpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
| 20 | eqid 2204 | . . . . . . 7 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
| 21 | 3, 20 | mgpplusgg 13604 | . . . . . 6 ⊢ (𝐾 ∈ 𝑉 → (.r‘𝐾) = (+g‘(mulGrp‘𝐾))) |
| 22 | 2, 21 | syl 14 | . . . . 5 ⊢ (𝜑 → (.r‘𝐾) = (+g‘(mulGrp‘𝐾))) |
| 23 | 22 | oveqdr 5962 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)) |
| 24 | eqid 2204 | . . . . . . 7 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
| 25 | 10, 24 | mgpplusgg 13604 | . . . . . 6 ⊢ (𝐿 ∈ 𝑊 → (.r‘𝐿) = (+g‘(mulGrp‘𝐿))) |
| 26 | 9, 25 | syl 14 | . . . . 5 ⊢ (𝜑 → (.r‘𝐿) = (+g‘(mulGrp‘𝐿))) |
| 27 | 26 | oveqdr 5962 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
| 28 | 19, 23, 27 | 3eqtr3d 2245 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
| 29 | 7, 14, 16, 18, 28 | grpidpropdg 13124 | . 2 ⊢ (𝜑 → (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐿))) |
| 30 | eqid 2204 | . . . 4 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
| 31 | 3, 30 | ringidvalg 13641 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (1r‘𝐾) = (0g‘(mulGrp‘𝐾))) |
| 32 | 2, 31 | syl 14 | . 2 ⊢ (𝜑 → (1r‘𝐾) = (0g‘(mulGrp‘𝐾))) |
| 33 | eqid 2204 | . . . 4 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
| 34 | 10, 33 | ringidvalg 13641 | . . 3 ⊢ (𝐿 ∈ 𝑊 → (1r‘𝐿) = (0g‘(mulGrp‘𝐿))) |
| 35 | 9, 34 | syl 14 | . 2 ⊢ (𝜑 → (1r‘𝐿) = (0g‘(mulGrp‘𝐿))) |
| 36 | 29, 32, 35 | 3eqtr4d 2247 | 1 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ‘cfv 5268 (class class class)co 5934 Basecbs 12751 +gcplusg 12828 .rcmulr 12829 0gc0g 13006 mulGrpcmgp 13600 1rcur 13639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-ltxr 8094 df-inn 9019 df-2 9077 df-3 9078 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-plusg 12841 df-mulr 12842 df-0g 13008 df-mgp 13601 df-ur 13640 |
| This theorem is referenced by: unitpropdg 13828 subrgpropd 13933 lmodprop2d 14028 |
| Copyright terms: Public domain | W3C validator |