| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngidpropdg | GIF version | ||
| Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| rngidpropdg.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| rngidpropdg.l | ⊢ (𝜑 → 𝐿 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| rngidpropdg | ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | rngidpropdg.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 3 | eqid 2229 | . . . . . 6 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
| 4 | eqid 2229 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 5 | 3, 4 | mgpbasg 13884 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾))) |
| 6 | 2, 5 | syl 14 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾))) |
| 7 | 1, 6 | eqtrd 2262 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐾))) |
| 8 | rngidpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 9 | rngidpropdg.l | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ 𝑊) | |
| 10 | eqid 2229 | . . . . . 6 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
| 11 | eqid 2229 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 12 | 10, 11 | mgpbasg 13884 | . . . . 5 ⊢ (𝐿 ∈ 𝑊 → (Base‘𝐿) = (Base‘(mulGrp‘𝐿))) |
| 13 | 9, 12 | syl 14 | . . . 4 ⊢ (𝜑 → (Base‘𝐿) = (Base‘(mulGrp‘𝐿))) |
| 14 | 8, 13 | eqtrd 2262 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐿))) |
| 15 | 3 | mgpex 13883 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → (mulGrp‘𝐾) ∈ V) |
| 16 | 2, 15 | syl 14 | . . 3 ⊢ (𝜑 → (mulGrp‘𝐾) ∈ V) |
| 17 | 10 | mgpex 13883 | . . . 4 ⊢ (𝐿 ∈ 𝑊 → (mulGrp‘𝐿) ∈ V) |
| 18 | 9, 17 | syl 14 | . . 3 ⊢ (𝜑 → (mulGrp‘𝐿) ∈ V) |
| 19 | rngidpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
| 20 | eqid 2229 | . . . . . . 7 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
| 21 | 3, 20 | mgpplusgg 13882 | . . . . . 6 ⊢ (𝐾 ∈ 𝑉 → (.r‘𝐾) = (+g‘(mulGrp‘𝐾))) |
| 22 | 2, 21 | syl 14 | . . . . 5 ⊢ (𝜑 → (.r‘𝐾) = (+g‘(mulGrp‘𝐾))) |
| 23 | 22 | oveqdr 6028 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)) |
| 24 | eqid 2229 | . . . . . . 7 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
| 25 | 10, 24 | mgpplusgg 13882 | . . . . . 6 ⊢ (𝐿 ∈ 𝑊 → (.r‘𝐿) = (+g‘(mulGrp‘𝐿))) |
| 26 | 9, 25 | syl 14 | . . . . 5 ⊢ (𝜑 → (.r‘𝐿) = (+g‘(mulGrp‘𝐿))) |
| 27 | 26 | oveqdr 6028 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
| 28 | 19, 23, 27 | 3eqtr3d 2270 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
| 29 | 7, 14, 16, 18, 28 | grpidpropdg 13402 | . 2 ⊢ (𝜑 → (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐿))) |
| 30 | eqid 2229 | . . . 4 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
| 31 | 3, 30 | ringidvalg 13919 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (1r‘𝐾) = (0g‘(mulGrp‘𝐾))) |
| 32 | 2, 31 | syl 14 | . 2 ⊢ (𝜑 → (1r‘𝐾) = (0g‘(mulGrp‘𝐾))) |
| 33 | eqid 2229 | . . . 4 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
| 34 | 10, 33 | ringidvalg 13919 | . . 3 ⊢ (𝐿 ∈ 𝑊 → (1r‘𝐿) = (0g‘(mulGrp‘𝐿))) |
| 35 | 9, 34 | syl 14 | . 2 ⊢ (𝜑 → (1r‘𝐿) = (0g‘(mulGrp‘𝐿))) |
| 36 | 29, 32, 35 | 3eqtr4d 2272 | 1 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 +gcplusg 13105 .rcmulr 13106 0gc0g 13284 mulGrpcmgp 13878 1rcur 13917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-plusg 13118 df-mulr 13119 df-0g 13286 df-mgp 13879 df-ur 13918 |
| This theorem is referenced by: unitpropdg 14106 subrgpropd 14211 lmodprop2d 14306 |
| Copyright terms: Public domain | W3C validator |