ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngidpropdg GIF version

Theorem rngidpropdg 13850
Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
rngidpropd.1 (𝜑𝐵 = (Base‘𝐾))
rngidpropd.2 (𝜑𝐵 = (Base‘𝐿))
rngidpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
rngidpropdg.k (𝜑𝐾𝑉)
rngidpropdg.l (𝜑𝐿𝑊)
Assertion
Ref Expression
rngidpropdg (𝜑 → (1r𝐾) = (1r𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem rngidpropdg
StepHypRef Expression
1 rngidpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 rngidpropdg.k . . . . 5 (𝜑𝐾𝑉)
3 eqid 2204 . . . . . 6 (mulGrp‘𝐾) = (mulGrp‘𝐾)
4 eqid 2204 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
53, 4mgpbasg 13630 . . . . 5 (𝐾𝑉 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
62, 5syl 14 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
71, 6eqtrd 2237 . . 3 (𝜑𝐵 = (Base‘(mulGrp‘𝐾)))
8 rngidpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
9 rngidpropdg.l . . . . 5 (𝜑𝐿𝑊)
10 eqid 2204 . . . . . 6 (mulGrp‘𝐿) = (mulGrp‘𝐿)
11 eqid 2204 . . . . . 6 (Base‘𝐿) = (Base‘𝐿)
1210, 11mgpbasg 13630 . . . . 5 (𝐿𝑊 → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
139, 12syl 14 . . . 4 (𝜑 → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
148, 13eqtrd 2237 . . 3 (𝜑𝐵 = (Base‘(mulGrp‘𝐿)))
153mgpex 13629 . . . 4 (𝐾𝑉 → (mulGrp‘𝐾) ∈ V)
162, 15syl 14 . . 3 (𝜑 → (mulGrp‘𝐾) ∈ V)
1710mgpex 13629 . . . 4 (𝐿𝑊 → (mulGrp‘𝐿) ∈ V)
189, 17syl 14 . . 3 (𝜑 → (mulGrp‘𝐿) ∈ V)
19 rngidpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
20 eqid 2204 . . . . . . 7 (.r𝐾) = (.r𝐾)
213, 20mgpplusgg 13628 . . . . . 6 (𝐾𝑉 → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
222, 21syl 14 . . . . 5 (𝜑 → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
2322oveqdr 5971 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦))
24 eqid 2204 . . . . . . 7 (.r𝐿) = (.r𝐿)
2510, 24mgpplusgg 13628 . . . . . 6 (𝐿𝑊 → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
269, 25syl 14 . . . . 5 (𝜑 → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
2726oveqdr 5971 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
2819, 23, 273eqtr3d 2245 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
297, 14, 16, 18, 28grpidpropdg 13148 . 2 (𝜑 → (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐿)))
30 eqid 2204 . . . 4 (1r𝐾) = (1r𝐾)
313, 30ringidvalg 13665 . . 3 (𝐾𝑉 → (1r𝐾) = (0g‘(mulGrp‘𝐾)))
322, 31syl 14 . 2 (𝜑 → (1r𝐾) = (0g‘(mulGrp‘𝐾)))
33 eqid 2204 . . . 4 (1r𝐿) = (1r𝐿)
3410, 33ringidvalg 13665 . . 3 (𝐿𝑊 → (1r𝐿) = (0g‘(mulGrp‘𝐿)))
359, 34syl 14 . 2 (𝜑 → (1r𝐿) = (0g‘(mulGrp‘𝐿)))
3629, 32, 353eqtr4d 2247 1 (𝜑 → (1r𝐾) = (1r𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  Vcvv 2771  cfv 5270  (class class class)co 5943  Basecbs 12774  +gcplusg 12851  .rcmulr 12852  0gc0g 13030  mulGrpcmgp 13624  1rcur 13663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-plusg 12864  df-mulr 12865  df-0g 13032  df-mgp 13625  df-ur 13664
This theorem is referenced by:  unitpropdg  13852  subrgpropd  13957  lmodprop2d  14052
  Copyright terms: Public domain W3C validator