![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rngidpropdg | GIF version |
Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
rngidpropdg.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
rngidpropdg.l | ⊢ (𝜑 → 𝐿 ∈ 𝑊) |
Ref | Expression |
---|---|
rngidpropdg | ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngidpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | rngidpropdg.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
3 | eqid 2177 | . . . . . 6 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
4 | eqid 2177 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | 3, 4 | mgpbasg 13134 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾))) |
6 | 2, 5 | syl 14 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾))) |
7 | 1, 6 | eqtrd 2210 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐾))) |
8 | rngidpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
9 | rngidpropdg.l | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ 𝑊) | |
10 | eqid 2177 | . . . . . 6 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
11 | eqid 2177 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
12 | 10, 11 | mgpbasg 13134 | . . . . 5 ⊢ (𝐿 ∈ 𝑊 → (Base‘𝐿) = (Base‘(mulGrp‘𝐿))) |
13 | 9, 12 | syl 14 | . . . 4 ⊢ (𝜑 → (Base‘𝐿) = (Base‘(mulGrp‘𝐿))) |
14 | 8, 13 | eqtrd 2210 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐿))) |
15 | 3 | mgpex 13133 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → (mulGrp‘𝐾) ∈ V) |
16 | 2, 15 | syl 14 | . . 3 ⊢ (𝜑 → (mulGrp‘𝐾) ∈ V) |
17 | 10 | mgpex 13133 | . . . 4 ⊢ (𝐿 ∈ 𝑊 → (mulGrp‘𝐿) ∈ V) |
18 | 9, 17 | syl 14 | . . 3 ⊢ (𝜑 → (mulGrp‘𝐿) ∈ V) |
19 | rngidpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
20 | eqid 2177 | . . . . . . 7 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
21 | 3, 20 | mgpplusgg 13132 | . . . . . 6 ⊢ (𝐾 ∈ 𝑉 → (.r‘𝐾) = (+g‘(mulGrp‘𝐾))) |
22 | 2, 21 | syl 14 | . . . . 5 ⊢ (𝜑 → (.r‘𝐾) = (+g‘(mulGrp‘𝐾))) |
23 | 22 | oveqdr 5902 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)) |
24 | eqid 2177 | . . . . . . 7 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
25 | 10, 24 | mgpplusgg 13132 | . . . . . 6 ⊢ (𝐿 ∈ 𝑊 → (.r‘𝐿) = (+g‘(mulGrp‘𝐿))) |
26 | 9, 25 | syl 14 | . . . . 5 ⊢ (𝜑 → (.r‘𝐿) = (+g‘(mulGrp‘𝐿))) |
27 | 26 | oveqdr 5902 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
28 | 19, 23, 27 | 3eqtr3d 2218 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
29 | 7, 14, 16, 18, 28 | grpidpropdg 12792 | . 2 ⊢ (𝜑 → (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐿))) |
30 | eqid 2177 | . . . 4 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
31 | 3, 30 | ringidvalg 13142 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (1r‘𝐾) = (0g‘(mulGrp‘𝐾))) |
32 | 2, 31 | syl 14 | . 2 ⊢ (𝜑 → (1r‘𝐾) = (0g‘(mulGrp‘𝐾))) |
33 | eqid 2177 | . . . 4 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
34 | 10, 33 | ringidvalg 13142 | . . 3 ⊢ (𝐿 ∈ 𝑊 → (1r‘𝐿) = (0g‘(mulGrp‘𝐿))) |
35 | 9, 34 | syl 14 | . 2 ⊢ (𝜑 → (1r‘𝐿) = (0g‘(mulGrp‘𝐿))) |
36 | 29, 32, 35 | 3eqtr4d 2220 | 1 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 Vcvv 2737 ‘cfv 5216 (class class class)co 5874 Basecbs 12461 +gcplusg 12535 .rcmulr 12536 0gc0g 12704 mulGrpcmgp 13128 1rcur 13140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-addcom 7910 ax-addass 7912 ax-i2m1 7915 ax-0lt1 7916 ax-0id 7918 ax-rnegex 7919 ax-pre-ltirr 7922 ax-pre-ltadd 7926 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-pnf 7993 df-mnf 7994 df-ltxr 7996 df-inn 8919 df-2 8977 df-3 8978 df-ndx 12464 df-slot 12465 df-base 12467 df-sets 12468 df-plusg 12548 df-mulr 12549 df-0g 12706 df-mgp 13129 df-ur 13141 |
This theorem is referenced by: unitpropdg 13315 subrgpropd 13367 |
Copyright terms: Public domain | W3C validator |