ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngidpropdg GIF version

Theorem rngidpropdg 13313
Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
rngidpropd.1 (𝜑𝐵 = (Base‘𝐾))
rngidpropd.2 (𝜑𝐵 = (Base‘𝐿))
rngidpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
rngidpropdg.k (𝜑𝐾𝑉)
rngidpropdg.l (𝜑𝐿𝑊)
Assertion
Ref Expression
rngidpropdg (𝜑 → (1r𝐾) = (1r𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem rngidpropdg
StepHypRef Expression
1 rngidpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 rngidpropdg.k . . . . 5 (𝜑𝐾𝑉)
3 eqid 2177 . . . . . 6 (mulGrp‘𝐾) = (mulGrp‘𝐾)
4 eqid 2177 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
53, 4mgpbasg 13134 . . . . 5 (𝐾𝑉 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
62, 5syl 14 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
71, 6eqtrd 2210 . . 3 (𝜑𝐵 = (Base‘(mulGrp‘𝐾)))
8 rngidpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
9 rngidpropdg.l . . . . 5 (𝜑𝐿𝑊)
10 eqid 2177 . . . . . 6 (mulGrp‘𝐿) = (mulGrp‘𝐿)
11 eqid 2177 . . . . . 6 (Base‘𝐿) = (Base‘𝐿)
1210, 11mgpbasg 13134 . . . . 5 (𝐿𝑊 → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
139, 12syl 14 . . . 4 (𝜑 → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
148, 13eqtrd 2210 . . 3 (𝜑𝐵 = (Base‘(mulGrp‘𝐿)))
153mgpex 13133 . . . 4 (𝐾𝑉 → (mulGrp‘𝐾) ∈ V)
162, 15syl 14 . . 3 (𝜑 → (mulGrp‘𝐾) ∈ V)
1710mgpex 13133 . . . 4 (𝐿𝑊 → (mulGrp‘𝐿) ∈ V)
189, 17syl 14 . . 3 (𝜑 → (mulGrp‘𝐿) ∈ V)
19 rngidpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
20 eqid 2177 . . . . . . 7 (.r𝐾) = (.r𝐾)
213, 20mgpplusgg 13132 . . . . . 6 (𝐾𝑉 → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
222, 21syl 14 . . . . 5 (𝜑 → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
2322oveqdr 5902 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦))
24 eqid 2177 . . . . . . 7 (.r𝐿) = (.r𝐿)
2510, 24mgpplusgg 13132 . . . . . 6 (𝐿𝑊 → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
269, 25syl 14 . . . . 5 (𝜑 → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
2726oveqdr 5902 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
2819, 23, 273eqtr3d 2218 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
297, 14, 16, 18, 28grpidpropdg 12792 . 2 (𝜑 → (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐿)))
30 eqid 2177 . . . 4 (1r𝐾) = (1r𝐾)
313, 30ringidvalg 13142 . . 3 (𝐾𝑉 → (1r𝐾) = (0g‘(mulGrp‘𝐾)))
322, 31syl 14 . 2 (𝜑 → (1r𝐾) = (0g‘(mulGrp‘𝐾)))
33 eqid 2177 . . . 4 (1r𝐿) = (1r𝐿)
3410, 33ringidvalg 13142 . . 3 (𝐿𝑊 → (1r𝐿) = (0g‘(mulGrp‘𝐿)))
359, 34syl 14 . 2 (𝜑 → (1r𝐿) = (0g‘(mulGrp‘𝐿)))
3629, 32, 353eqtr4d 2220 1 (𝜑 → (1r𝐾) = (1r𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  Vcvv 2737  cfv 5216  (class class class)co 5874  Basecbs 12461  +gcplusg 12535  .rcmulr 12536  0gc0g 12704  mulGrpcmgp 13128  1rcur 13140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7993  df-mnf 7994  df-ltxr 7996  df-inn 8919  df-2 8977  df-3 8978  df-ndx 12464  df-slot 12465  df-base 12467  df-sets 12468  df-plusg 12548  df-mulr 12549  df-0g 12706  df-mgp 13129  df-ur 13141
This theorem is referenced by:  unitpropdg  13315  subrgpropd  13367
  Copyright terms: Public domain W3C validator