| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngidpropdg | GIF version | ||
| Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| rngidpropdg.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| rngidpropdg.l | ⊢ (𝜑 → 𝐿 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| rngidpropdg | ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | rngidpropdg.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 3 | eqid 2206 | . . . . . 6 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
| 4 | eqid 2206 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 5 | 3, 4 | mgpbasg 13763 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾))) |
| 6 | 2, 5 | syl 14 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘(mulGrp‘𝐾))) |
| 7 | 1, 6 | eqtrd 2239 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐾))) |
| 8 | rngidpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 9 | rngidpropdg.l | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ 𝑊) | |
| 10 | eqid 2206 | . . . . . 6 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
| 11 | eqid 2206 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 12 | 10, 11 | mgpbasg 13763 | . . . . 5 ⊢ (𝐿 ∈ 𝑊 → (Base‘𝐿) = (Base‘(mulGrp‘𝐿))) |
| 13 | 9, 12 | syl 14 | . . . 4 ⊢ (𝜑 → (Base‘𝐿) = (Base‘(mulGrp‘𝐿))) |
| 14 | 8, 13 | eqtrd 2239 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐿))) |
| 15 | 3 | mgpex 13762 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → (mulGrp‘𝐾) ∈ V) |
| 16 | 2, 15 | syl 14 | . . 3 ⊢ (𝜑 → (mulGrp‘𝐾) ∈ V) |
| 17 | 10 | mgpex 13762 | . . . 4 ⊢ (𝐿 ∈ 𝑊 → (mulGrp‘𝐿) ∈ V) |
| 18 | 9, 17 | syl 14 | . . 3 ⊢ (𝜑 → (mulGrp‘𝐿) ∈ V) |
| 19 | rngidpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
| 20 | eqid 2206 | . . . . . . 7 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
| 21 | 3, 20 | mgpplusgg 13761 | . . . . . 6 ⊢ (𝐾 ∈ 𝑉 → (.r‘𝐾) = (+g‘(mulGrp‘𝐾))) |
| 22 | 2, 21 | syl 14 | . . . . 5 ⊢ (𝜑 → (.r‘𝐾) = (+g‘(mulGrp‘𝐾))) |
| 23 | 22 | oveqdr 5985 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)) |
| 24 | eqid 2206 | . . . . . . 7 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
| 25 | 10, 24 | mgpplusgg 13761 | . . . . . 6 ⊢ (𝐿 ∈ 𝑊 → (.r‘𝐿) = (+g‘(mulGrp‘𝐿))) |
| 26 | 9, 25 | syl 14 | . . . . 5 ⊢ (𝜑 → (.r‘𝐿) = (+g‘(mulGrp‘𝐿))) |
| 27 | 26 | oveqdr 5985 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
| 28 | 19, 23, 27 | 3eqtr3d 2247 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
| 29 | 7, 14, 16, 18, 28 | grpidpropdg 13281 | . 2 ⊢ (𝜑 → (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐿))) |
| 30 | eqid 2206 | . . . 4 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
| 31 | 3, 30 | ringidvalg 13798 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (1r‘𝐾) = (0g‘(mulGrp‘𝐾))) |
| 32 | 2, 31 | syl 14 | . 2 ⊢ (𝜑 → (1r‘𝐾) = (0g‘(mulGrp‘𝐾))) |
| 33 | eqid 2206 | . . . 4 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
| 34 | 10, 33 | ringidvalg 13798 | . . 3 ⊢ (𝐿 ∈ 𝑊 → (1r‘𝐿) = (0g‘(mulGrp‘𝐿))) |
| 35 | 9, 34 | syl 14 | . 2 ⊢ (𝜑 → (1r‘𝐿) = (0g‘(mulGrp‘𝐿))) |
| 36 | 29, 32, 35 | 3eqtr4d 2249 | 1 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 +gcplusg 12984 .rcmulr 12985 0gc0g 13163 mulGrpcmgp 13757 1rcur 13796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-plusg 12997 df-mulr 12998 df-0g 13165 df-mgp 13758 df-ur 13797 |
| This theorem is referenced by: unitpropdg 13985 subrgpropd 14090 lmodprop2d 14185 |
| Copyright terms: Public domain | W3C validator |