![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grppropstrg | GIF version |
Description: Generalize a specific 2-element group 𝐿 to show that any set 𝐾 with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grppropstr.b | ⊢ (Base‘𝐾) = 𝐵 |
grppropstr.p | ⊢ (+g‘𝐾) = + |
grppropstr.l | ⊢ 𝐿 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
Ref | Expression |
---|---|
grppropstrg | ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grppropstr.b | . . . . 5 ⊢ (Base‘𝐾) = 𝐵 | |
2 | basfn 12514 | . . . . . 6 ⊢ Base Fn V | |
3 | elex 2748 | . . . . . 6 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
4 | funfvex 5532 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐾 ∈ dom Base) → (Base‘𝐾) ∈ V) | |
5 | 4 | funfni 5316 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐾 ∈ V) → (Base‘𝐾) ∈ V) |
6 | 2, 3, 5 | sylancr 414 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → (Base‘𝐾) ∈ V) |
7 | 1, 6 | eqeltrrid 2265 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → 𝐵 ∈ V) |
8 | grppropstr.p | . . . . 5 ⊢ (+g‘𝐾) = + | |
9 | plusgslid 12565 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
10 | 9 | slotex 12483 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → (+g‘𝐾) ∈ V) |
11 | 8, 10 | eqeltrrid 2265 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → + ∈ V) |
12 | grppropstr.l | . . . . 5 ⊢ 𝐿 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} | |
13 | 12 | grpbaseg 12579 | . . . 4 ⊢ ((𝐵 ∈ V ∧ + ∈ V) → 𝐵 = (Base‘𝐿)) |
14 | 7, 11, 13 | syl2anc 411 | . . 3 ⊢ (𝐾 ∈ 𝑉 → 𝐵 = (Base‘𝐿)) |
15 | 1, 14 | eqtrid 2222 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (Base‘𝐾) = (Base‘𝐿)) |
16 | 14, 15 | eqtr4d 2213 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) |
17 | 12 | grpplusgg 12580 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ + ∈ V) → + = (+g‘𝐿)) |
18 | 7, 11, 17 | syl2anc 411 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → + = (+g‘𝐿)) |
19 | 8, 18 | eqtrid 2222 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (+g‘𝐾) = (+g‘𝐿)) |
20 | 19 | oveqdr 5902 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
21 | 16, 14, 20 | grppropd 12847 | 1 ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 Vcvv 2737 {cpr 3593 〈cop 3595 Fn wfn 5211 ‘cfv 5216 ndxcnx 12453 Basecbs 12456 +gcplusg 12530 Grpcgrp 12831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-addcom 7910 ax-addass 7912 ax-i2m1 7915 ax-0lt1 7916 ax-0id 7918 ax-rnegex 7919 ax-pre-ltirr 7922 ax-pre-ltadd 7926 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-iota 5178 df-fun 5218 df-fn 5219 df-fv 5224 df-riota 5830 df-ov 5877 df-pnf 7992 df-mnf 7993 df-ltxr 7995 df-inn 8918 df-2 8976 df-ndx 12459 df-slot 12460 df-base 12462 df-plusg 12543 df-0g 12697 df-mgm 12729 df-sgrp 12762 df-mnd 12772 df-grp 12834 |
This theorem is referenced by: ring1 13189 |
Copyright terms: Public domain | W3C validator |