![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grppropstrg | GIF version |
Description: Generalize a specific 2-element group πΏ to show that any set πΎ with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grppropstr.b | β’ (BaseβπΎ) = π΅ |
grppropstr.p | β’ (+gβπΎ) = + |
grppropstr.l | β’ πΏ = {β¨(Baseβndx), π΅β©, β¨(+gβndx), + β©} |
Ref | Expression |
---|---|
grppropstrg | β’ (πΎ β π β (πΎ β Grp β πΏ β Grp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grppropstr.b | . . . . 5 β’ (BaseβπΎ) = π΅ | |
2 | basfn 12533 | . . . . . 6 β’ Base Fn V | |
3 | elex 2760 | . . . . . 6 β’ (πΎ β π β πΎ β V) | |
4 | funfvex 5544 | . . . . . . 7 β’ ((Fun Base β§ πΎ β dom Base) β (BaseβπΎ) β V) | |
5 | 4 | funfni 5328 | . . . . . 6 β’ ((Base Fn V β§ πΎ β V) β (BaseβπΎ) β V) |
6 | 2, 3, 5 | sylancr 414 | . . . . 5 β’ (πΎ β π β (BaseβπΎ) β V) |
7 | 1, 6 | eqeltrrid 2275 | . . . 4 β’ (πΎ β π β π΅ β V) |
8 | grppropstr.p | . . . . 5 β’ (+gβπΎ) = + | |
9 | plusgslid 12585 | . . . . . 6 β’ (+g = Slot (+gβndx) β§ (+gβndx) β β) | |
10 | 9 | slotex 12502 | . . . . 5 β’ (πΎ β π β (+gβπΎ) β V) |
11 | 8, 10 | eqeltrrid 2275 | . . . 4 β’ (πΎ β π β + β V) |
12 | grppropstr.l | . . . . 5 β’ πΏ = {β¨(Baseβndx), π΅β©, β¨(+gβndx), + β©} | |
13 | 12 | grpbaseg 12599 | . . . 4 β’ ((π΅ β V β§ + β V) β π΅ = (BaseβπΏ)) |
14 | 7, 11, 13 | syl2anc 411 | . . 3 β’ (πΎ β π β π΅ = (BaseβπΏ)) |
15 | 1, 14 | eqtrid 2232 | . . 3 β’ (πΎ β π β (BaseβπΎ) = (BaseβπΏ)) |
16 | 14, 15 | eqtr4d 2223 | . 2 β’ (πΎ β π β π΅ = (BaseβπΎ)) |
17 | 12 | grpplusgg 12600 | . . . . 5 β’ ((π΅ β V β§ + β V) β + = (+gβπΏ)) |
18 | 7, 11, 17 | syl2anc 411 | . . . 4 β’ (πΎ β π β + = (+gβπΏ)) |
19 | 8, 18 | eqtrid 2232 | . . 3 β’ (πΎ β π β (+gβπΎ) = (+gβπΏ)) |
20 | 19 | oveqdr 5916 | . 2 β’ ((πΎ β π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) |
21 | 16, 14, 20 | grppropd 12914 | 1 β’ (πΎ β π β (πΎ β Grp β πΏ β Grp)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1363 β wcel 2158 Vcvv 2749 {cpr 3605 β¨cop 3607 Fn wfn 5223 βcfv 5228 ndxcnx 12472 Basecbs 12475 +gcplusg 12550 Grpcgrp 12898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-addcom 7924 ax-addass 7926 ax-i2m1 7929 ax-0lt1 7930 ax-0id 7932 ax-rnegex 7933 ax-pre-ltirr 7936 ax-pre-ltadd 7940 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-iota 5190 df-fun 5230 df-fn 5231 df-fv 5236 df-riota 5844 df-ov 5891 df-pnf 8007 df-mnf 8008 df-ltxr 8010 df-inn 8933 df-2 8991 df-ndx 12478 df-slot 12479 df-base 12481 df-plusg 12563 df-0g 12724 df-mgm 12793 df-sgrp 12826 df-mnd 12839 df-grp 12901 |
This theorem is referenced by: ring1 13304 |
Copyright terms: Public domain | W3C validator |