ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grppropstrg GIF version

Theorem grppropstrg 12849
Description: Generalize a specific 2-element group 𝐿 to show that any set 𝐾 with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grppropstr.b (Base‘𝐾) = 𝐵
grppropstr.p (+g𝐾) = +
grppropstr.l 𝐿 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}
Assertion
Ref Expression
grppropstrg (𝐾𝑉 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))

Proof of Theorem grppropstrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grppropstr.b . . . . 5 (Base‘𝐾) = 𝐵
2 basfn 12514 . . . . . 6 Base Fn V
3 elex 2748 . . . . . 6 (𝐾𝑉𝐾 ∈ V)
4 funfvex 5532 . . . . . . 7 ((Fun Base ∧ 𝐾 ∈ dom Base) → (Base‘𝐾) ∈ V)
54funfni 5316 . . . . . 6 ((Base Fn V ∧ 𝐾 ∈ V) → (Base‘𝐾) ∈ V)
62, 3, 5sylancr 414 . . . . 5 (𝐾𝑉 → (Base‘𝐾) ∈ V)
71, 6eqeltrrid 2265 . . . 4 (𝐾𝑉𝐵 ∈ V)
8 grppropstr.p . . . . 5 (+g𝐾) = +
9 plusgslid 12565 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
109slotex 12483 . . . . 5 (𝐾𝑉 → (+g𝐾) ∈ V)
118, 10eqeltrrid 2265 . . . 4 (𝐾𝑉+ ∈ V)
12 grppropstr.l . . . . 5 𝐿 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}
1312grpbaseg 12579 . . . 4 ((𝐵 ∈ V ∧ + ∈ V) → 𝐵 = (Base‘𝐿))
147, 11, 13syl2anc 411 . . 3 (𝐾𝑉𝐵 = (Base‘𝐿))
151, 14eqtrid 2222 . . 3 (𝐾𝑉 → (Base‘𝐾) = (Base‘𝐿))
1614, 15eqtr4d 2213 . 2 (𝐾𝑉𝐵 = (Base‘𝐾))
1712grpplusgg 12580 . . . . 5 ((𝐵 ∈ V ∧ + ∈ V) → + = (+g𝐿))
187, 11, 17syl2anc 411 . . . 4 (𝐾𝑉+ = (+g𝐿))
198, 18eqtrid 2222 . . 3 (𝐾𝑉 → (+g𝐾) = (+g𝐿))
2019oveqdr 5902 . 2 ((𝐾𝑉 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
2116, 14, 20grppropd 12847 1 (𝐾𝑉 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  Vcvv 2737  {cpr 3593  cop 3595   Fn wfn 5211  cfv 5216  ndxcnx 12453  Basecbs 12456  +gcplusg 12530  Grpcgrp 12831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224  df-riota 5830  df-ov 5877  df-pnf 7992  df-mnf 7993  df-ltxr 7995  df-inn 8918  df-2 8976  df-ndx 12459  df-slot 12460  df-base 12462  df-plusg 12543  df-0g 12697  df-mgm 12729  df-sgrp 12762  df-mnd 12772  df-grp 12834
This theorem is referenced by:  ring1  13189
  Copyright terms: Public domain W3C validator