![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grppropstrg | GIF version |
Description: Generalize a specific 2-element group 𝐿 to show that any set 𝐾 with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grppropstr.b | ⊢ (Base‘𝐾) = 𝐵 |
grppropstr.p | ⊢ (+g‘𝐾) = + |
grppropstr.l | ⊢ 𝐿 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
Ref | Expression |
---|---|
grppropstrg | ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grppropstr.b | . . . . 5 ⊢ (Base‘𝐾) = 𝐵 | |
2 | basfn 12679 | . . . . . 6 ⊢ Base Fn V | |
3 | elex 2771 | . . . . . 6 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
4 | funfvex 5572 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐾 ∈ dom Base) → (Base‘𝐾) ∈ V) | |
5 | 4 | funfni 5355 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐾 ∈ V) → (Base‘𝐾) ∈ V) |
6 | 2, 3, 5 | sylancr 414 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → (Base‘𝐾) ∈ V) |
7 | 1, 6 | eqeltrrid 2281 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → 𝐵 ∈ V) |
8 | grppropstr.p | . . . . 5 ⊢ (+g‘𝐾) = + | |
9 | plusgslid 12733 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
10 | 9 | slotex 12648 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → (+g‘𝐾) ∈ V) |
11 | 8, 10 | eqeltrrid 2281 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → + ∈ V) |
12 | grppropstr.l | . . . . 5 ⊢ 𝐿 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} | |
13 | 12 | grpbaseg 12747 | . . . 4 ⊢ ((𝐵 ∈ V ∧ + ∈ V) → 𝐵 = (Base‘𝐿)) |
14 | 7, 11, 13 | syl2anc 411 | . . 3 ⊢ (𝐾 ∈ 𝑉 → 𝐵 = (Base‘𝐿)) |
15 | 1, 14 | eqtrid 2238 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (Base‘𝐾) = (Base‘𝐿)) |
16 | 14, 15 | eqtr4d 2229 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) |
17 | 12 | grpplusgg 12748 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ + ∈ V) → + = (+g‘𝐿)) |
18 | 7, 11, 17 | syl2anc 411 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → + = (+g‘𝐿)) |
19 | 8, 18 | eqtrid 2238 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (+g‘𝐾) = (+g‘𝐿)) |
20 | 19 | oveqdr 5947 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
21 | 16, 14, 20 | grppropd 13092 | 1 ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 {cpr 3620 〈cop 3622 Fn wfn 5250 ‘cfv 5255 ndxcnx 12618 Basecbs 12621 +gcplusg 12698 Grpcgrp 13075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-riota 5874 df-ov 5922 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 |
This theorem is referenced by: ring1 13558 |
Copyright terms: Public domain | W3C validator |