![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grppropstrg | GIF version |
Description: Generalize a specific 2-element group πΏ to show that any set πΎ with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grppropstr.b | β’ (BaseβπΎ) = π΅ |
grppropstr.p | β’ (+gβπΎ) = + |
grppropstr.l | β’ πΏ = {β¨(Baseβndx), π΅β©, β¨(+gβndx), + β©} |
Ref | Expression |
---|---|
grppropstrg | β’ (πΎ β π β (πΎ β Grp β πΏ β Grp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grppropstr.b | . . . . 5 β’ (BaseβπΎ) = π΅ | |
2 | basfn 12544 | . . . . . 6 β’ Base Fn V | |
3 | elex 2763 | . . . . . 6 β’ (πΎ β π β πΎ β V) | |
4 | funfvex 5547 | . . . . . . 7 β’ ((Fun Base β§ πΎ β dom Base) β (BaseβπΎ) β V) | |
5 | 4 | funfni 5331 | . . . . . 6 β’ ((Base Fn V β§ πΎ β V) β (BaseβπΎ) β V) |
6 | 2, 3, 5 | sylancr 414 | . . . . 5 β’ (πΎ β π β (BaseβπΎ) β V) |
7 | 1, 6 | eqeltrrid 2277 | . . . 4 β’ (πΎ β π β π΅ β V) |
8 | grppropstr.p | . . . . 5 β’ (+gβπΎ) = + | |
9 | plusgslid 12596 | . . . . . 6 β’ (+g = Slot (+gβndx) β§ (+gβndx) β β) | |
10 | 9 | slotex 12513 | . . . . 5 β’ (πΎ β π β (+gβπΎ) β V) |
11 | 8, 10 | eqeltrrid 2277 | . . . 4 β’ (πΎ β π β + β V) |
12 | grppropstr.l | . . . . 5 β’ πΏ = {β¨(Baseβndx), π΅β©, β¨(+gβndx), + β©} | |
13 | 12 | grpbaseg 12610 | . . . 4 β’ ((π΅ β V β§ + β V) β π΅ = (BaseβπΏ)) |
14 | 7, 11, 13 | syl2anc 411 | . . 3 β’ (πΎ β π β π΅ = (BaseβπΏ)) |
15 | 1, 14 | eqtrid 2234 | . . 3 β’ (πΎ β π β (BaseβπΎ) = (BaseβπΏ)) |
16 | 14, 15 | eqtr4d 2225 | . 2 β’ (πΎ β π β π΅ = (BaseβπΎ)) |
17 | 12 | grpplusgg 12611 | . . . . 5 β’ ((π΅ β V β§ + β V) β + = (+gβπΏ)) |
18 | 7, 11, 17 | syl2anc 411 | . . . 4 β’ (πΎ β π β + = (+gβπΏ)) |
19 | 8, 18 | eqtrid 2234 | . . 3 β’ (πΎ β π β (+gβπΎ) = (+gβπΏ)) |
20 | 19 | oveqdr 5919 | . 2 β’ ((πΎ β π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) |
21 | 16, 14, 20 | grppropd 12934 | 1 β’ (πΎ β π β (πΎ β Grp β πΏ β Grp)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1364 β wcel 2160 Vcvv 2752 {cpr 3608 β¨cop 3610 Fn wfn 5226 βcfv 5231 ndxcnx 12483 Basecbs 12486 +gcplusg 12561 Grpcgrp 12917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7921 ax-resscn 7922 ax-1cn 7923 ax-1re 7924 ax-icn 7925 ax-addcl 7926 ax-addrcl 7927 ax-mulcl 7928 ax-addcom 7930 ax-addass 7932 ax-i2m1 7935 ax-0lt1 7936 ax-0id 7938 ax-rnegex 7939 ax-pre-ltirr 7942 ax-pre-ltadd 7946 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-iota 5193 df-fun 5233 df-fn 5234 df-fv 5239 df-riota 5847 df-ov 5894 df-pnf 8013 df-mnf 8014 df-ltxr 8016 df-inn 8939 df-2 8997 df-ndx 12489 df-slot 12490 df-base 12492 df-plusg 12574 df-0g 12735 df-mgm 12804 df-sgrp 12837 df-mnd 12850 df-grp 12920 |
This theorem is referenced by: ring1 13378 |
Copyright terms: Public domain | W3C validator |