| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grppropstrg | GIF version | ||
| Description: Generalize a specific 2-element group 𝐿 to show that any set 𝐾 with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grppropstr.b | ⊢ (Base‘𝐾) = 𝐵 |
| grppropstr.p | ⊢ (+g‘𝐾) = + |
| grppropstr.l | ⊢ 𝐿 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
| Ref | Expression |
|---|---|
| grppropstrg | ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grppropstr.b | . . . . 5 ⊢ (Base‘𝐾) = 𝐵 | |
| 2 | basfn 12761 | . . . . . 6 ⊢ Base Fn V | |
| 3 | elex 2774 | . . . . . 6 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
| 4 | funfvex 5578 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐾 ∈ dom Base) → (Base‘𝐾) ∈ V) | |
| 5 | 4 | funfni 5361 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐾 ∈ V) → (Base‘𝐾) ∈ V) |
| 6 | 2, 3, 5 | sylancr 414 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → (Base‘𝐾) ∈ V) |
| 7 | 1, 6 | eqeltrrid 2284 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → 𝐵 ∈ V) |
| 8 | grppropstr.p | . . . . 5 ⊢ (+g‘𝐾) = + | |
| 9 | plusgslid 12815 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 10 | 9 | slotex 12730 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → (+g‘𝐾) ∈ V) |
| 11 | 8, 10 | eqeltrrid 2284 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → + ∈ V) |
| 12 | grppropstr.l | . . . . 5 ⊢ 𝐿 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} | |
| 13 | 12 | grpbaseg 12829 | . . . 4 ⊢ ((𝐵 ∈ V ∧ + ∈ V) → 𝐵 = (Base‘𝐿)) |
| 14 | 7, 11, 13 | syl2anc 411 | . . 3 ⊢ (𝐾 ∈ 𝑉 → 𝐵 = (Base‘𝐿)) |
| 15 | 1, 14 | eqtrid 2241 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (Base‘𝐾) = (Base‘𝐿)) |
| 16 | 14, 15 | eqtr4d 2232 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) |
| 17 | 12 | grpplusgg 12830 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ + ∈ V) → + = (+g‘𝐿)) |
| 18 | 7, 11, 17 | syl2anc 411 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → + = (+g‘𝐿)) |
| 19 | 8, 18 | eqtrid 2241 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (+g‘𝐾) = (+g‘𝐿)) |
| 20 | 19 | oveqdr 5953 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 21 | 16, 14, 20 | grppropd 13219 | 1 ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {cpr 3624 〈cop 3626 Fn wfn 5254 ‘cfv 5259 ndxcnx 12700 Basecbs 12703 +gcplusg 12780 Grpcgrp 13202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 |
| This theorem is referenced by: ring1 13691 |
| Copyright terms: Public domain | W3C validator |