![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oveqrspc2v | GIF version |
Description: Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014.) |
Ref | Expression |
---|---|
oveqrspc2v.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
Ref | Expression |
---|---|
oveqrspc2v | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveqrspc2v.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) | |
2 | 1 | ralrimivva 2576 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
3 | oveq1 5925 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐹𝑦) = (𝑋𝐹𝑦)) | |
4 | oveq1 5925 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐺𝑦) = (𝑋𝐺𝑦)) | |
5 | 3, 4 | eqeq12d 2208 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝐹𝑦) = (𝑥𝐺𝑦) ↔ (𝑋𝐹𝑦) = (𝑋𝐺𝑦))) |
6 | oveq2 5926 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐹𝑦) = (𝑋𝐹𝑌)) | |
7 | oveq2 5926 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐺𝑦) = (𝑋𝐺𝑌)) | |
8 | 6, 7 | eqeq12d 2208 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝐹𝑦) = (𝑋𝐺𝑦) ↔ (𝑋𝐹𝑌) = (𝑋𝐺𝑌))) |
9 | 5, 8 | rspc2v 2877 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌))) |
10 | 2, 9 | mpan9 281 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 (class class class)co 5918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: grpidpropdg 12957 sgrppropd 12996 mndpropd 13021 grpsubpropd2 13177 cmnpropd 13365 rngpropd 13451 ringpropd 13534 lmodprop2d 13844 lsspropdg 13927 |
Copyright terms: Public domain | W3C validator |