ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngpropd GIF version

Theorem crngpropd 13743
Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
ringpropd.1 (𝜑𝐵 = (Base‘𝐾))
ringpropd.2 (𝜑𝐵 = (Base‘𝐿))
ringpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
ringpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
crngpropd (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem crngpropd
StepHypRef Expression
1 ringpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
2 eqid 2204 . . . . . . 7 (mulGrp‘𝐾) = (mulGrp‘𝐾)
3 eqid 2204 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
42, 3mgpbasg 13630 . . . . . 6 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
51, 4sylan9eq 2257 . . . . 5 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘(mulGrp‘𝐾)))
6 ringpropd.2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐿))
76adantr 276 . . . . . 6 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐿))
8 ringpropd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
9 ringpropd.4 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
101, 6, 8, 9ringpropd 13742 . . . . . . . 8 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
1110biimpa 296 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → 𝐿 ∈ Ring)
12 eqid 2204 . . . . . . . 8 (mulGrp‘𝐿) = (mulGrp‘𝐿)
13 eqid 2204 . . . . . . . 8 (Base‘𝐿) = (Base‘𝐿)
1412, 13mgpbasg 13630 . . . . . . 7 (𝐿 ∈ Ring → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
1511, 14syl 14 . . . . . 6 ((𝜑𝐾 ∈ Ring) → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
167, 15eqtrd 2237 . . . . 5 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘(mulGrp‘𝐿)))
179adantlr 477 . . . . . 6 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
18 eqid 2204 . . . . . . . . 9 (.r𝐾) = (.r𝐾)
192, 18mgpplusgg 13628 . . . . . . . 8 (𝐾 ∈ Ring → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
2019adantl 277 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
2120oveqdr 5971 . . . . . 6 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦))
22 eqid 2204 . . . . . . . . 9 (.r𝐿) = (.r𝐿)
2312, 22mgpplusgg 13628 . . . . . . . 8 (𝐿 ∈ Ring → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
2411, 23syl 14 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
2524oveqdr 5971 . . . . . 6 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
2617, 21, 253eqtr3d 2245 . . . . 5 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
275, 16, 26cmnpropd 13573 . . . 4 ((𝜑𝐾 ∈ Ring) → ((mulGrp‘𝐾) ∈ CMnd ↔ (mulGrp‘𝐿) ∈ CMnd))
2827pm5.32da 452 . . 3 (𝜑 → ((𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd) ↔ (𝐾 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd)))
2910anbi1d 465 . . 3 (𝜑 → ((𝐾 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd) ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd)))
3028, 29bitrd 188 . 2 (𝜑 → ((𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd) ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd)))
312iscrng 13707 . 2 (𝐾 ∈ CRing ↔ (𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd))
3212iscrng 13707 . 2 (𝐿 ∈ CRing ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd))
3330, 31, 323bitr4g 223 1 (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  cfv 5270  (class class class)co 5943  Basecbs 12774  +gcplusg 12851  .rcmulr 12852  CMndccmn 13562  mulGrpcmgp 13624  Ringcrg 13700  CRingccrg 13701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-plusg 12864  df-mulr 12865  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-cmn 13564  df-mgp 13625  df-ring 13702  df-cring 13703
This theorem is referenced by:  zncrng  14349
  Copyright terms: Public domain W3C validator