ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngpropd GIF version

Theorem crngpropd 13997
Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
ringpropd.1 (𝜑𝐵 = (Base‘𝐾))
ringpropd.2 (𝜑𝐵 = (Base‘𝐿))
ringpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
ringpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
crngpropd (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem crngpropd
StepHypRef Expression
1 ringpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
2 eqid 2229 . . . . . . 7 (mulGrp‘𝐾) = (mulGrp‘𝐾)
3 eqid 2229 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
42, 3mgpbasg 13884 . . . . . 6 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
51, 4sylan9eq 2282 . . . . 5 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘(mulGrp‘𝐾)))
6 ringpropd.2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐿))
76adantr 276 . . . . . 6 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐿))
8 ringpropd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
9 ringpropd.4 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
101, 6, 8, 9ringpropd 13996 . . . . . . . 8 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
1110biimpa 296 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → 𝐿 ∈ Ring)
12 eqid 2229 . . . . . . . 8 (mulGrp‘𝐿) = (mulGrp‘𝐿)
13 eqid 2229 . . . . . . . 8 (Base‘𝐿) = (Base‘𝐿)
1412, 13mgpbasg 13884 . . . . . . 7 (𝐿 ∈ Ring → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
1511, 14syl 14 . . . . . 6 ((𝜑𝐾 ∈ Ring) → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
167, 15eqtrd 2262 . . . . 5 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘(mulGrp‘𝐿)))
179adantlr 477 . . . . . 6 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
18 eqid 2229 . . . . . . . . 9 (.r𝐾) = (.r𝐾)
192, 18mgpplusgg 13882 . . . . . . . 8 (𝐾 ∈ Ring → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
2019adantl 277 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
2120oveqdr 6028 . . . . . 6 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦))
22 eqid 2229 . . . . . . . . 9 (.r𝐿) = (.r𝐿)
2312, 22mgpplusgg 13882 . . . . . . . 8 (𝐿 ∈ Ring → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
2411, 23syl 14 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
2524oveqdr 6028 . . . . . 6 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
2617, 21, 253eqtr3d 2270 . . . . 5 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
275, 16, 26cmnpropd 13827 . . . 4 ((𝜑𝐾 ∈ Ring) → ((mulGrp‘𝐾) ∈ CMnd ↔ (mulGrp‘𝐿) ∈ CMnd))
2827pm5.32da 452 . . 3 (𝜑 → ((𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd) ↔ (𝐾 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd)))
2910anbi1d 465 . . 3 (𝜑 → ((𝐾 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd) ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd)))
3028, 29bitrd 188 . 2 (𝜑 → ((𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd) ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd)))
312iscrng 13961 . 2 (𝐾 ∈ CRing ↔ (𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd))
3212iscrng 13961 . 2 (𝐿 ∈ CRing ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd))
3330, 31, 323bitr4g 223 1 (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  .rcmulr 13106  CMndccmn 13816  mulGrpcmgp 13878  Ringcrg 13954  CRingccrg 13955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-cmn 13818  df-mgp 13879  df-ring 13956  df-cring 13957
This theorem is referenced by:  zncrng  14603
  Copyright terms: Public domain W3C validator