ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngpropd GIF version

Theorem crngpropd 13010
Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
ringpropd.1 (𝜑𝐵 = (Base‘𝐾))
ringpropd.2 (𝜑𝐵 = (Base‘𝐿))
ringpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
ringpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
crngpropd (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem crngpropd
StepHypRef Expression
1 ringpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
2 eqid 2175 . . . . . . 7 (mulGrp‘𝐾) = (mulGrp‘𝐾)
3 eqid 2175 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
42, 3mgpbasg 12930 . . . . . 6 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘(mulGrp‘𝐾)))
51, 4sylan9eq 2228 . . . . 5 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘(mulGrp‘𝐾)))
6 ringpropd.2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐿))
76adantr 276 . . . . . 6 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘𝐿))
8 ringpropd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
9 ringpropd.4 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
101, 6, 8, 9ringpropd 13009 . . . . . . . 8 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
1110biimpa 296 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → 𝐿 ∈ Ring)
12 eqid 2175 . . . . . . . 8 (mulGrp‘𝐿) = (mulGrp‘𝐿)
13 eqid 2175 . . . . . . . 8 (Base‘𝐿) = (Base‘𝐿)
1412, 13mgpbasg 12930 . . . . . . 7 (𝐿 ∈ Ring → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
1511, 14syl 14 . . . . . 6 ((𝜑𝐾 ∈ Ring) → (Base‘𝐿) = (Base‘(mulGrp‘𝐿)))
167, 15eqtrd 2208 . . . . 5 ((𝜑𝐾 ∈ Ring) → 𝐵 = (Base‘(mulGrp‘𝐿)))
179adantlr 477 . . . . . 6 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
18 eqid 2175 . . . . . . . . 9 (.r𝐾) = (.r𝐾)
192, 18mgpplusgg 12929 . . . . . . . 8 (𝐾 ∈ Ring → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
2019adantl 277 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
2120oveqdr 5893 . . . . . 6 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦))
22 eqid 2175 . . . . . . . . 9 (.r𝐿) = (.r𝐿)
2312, 22mgpplusgg 12929 . . . . . . . 8 (𝐿 ∈ Ring → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
2411, 23syl 14 . . . . . . 7 ((𝜑𝐾 ∈ Ring) → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
2524oveqdr 5893 . . . . . 6 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
2617, 21, 253eqtr3d 2216 . . . . 5 (((𝜑𝐾 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
275, 16, 26cmnpropd 12894 . . . 4 ((𝜑𝐾 ∈ Ring) → ((mulGrp‘𝐾) ∈ CMnd ↔ (mulGrp‘𝐿) ∈ CMnd))
2827pm5.32da 452 . . 3 (𝜑 → ((𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd) ↔ (𝐾 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd)))
2910anbi1d 465 . . 3 (𝜑 → ((𝐾 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd) ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd)))
3028, 29bitrd 188 . 2 (𝜑 → ((𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd) ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd)))
312iscrng 12979 . 2 (𝐾 ∈ CRing ↔ (𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd))
3212iscrng 12979 . 2 (𝐿 ∈ CRing ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd))
3330, 31, 323bitr4g 223 1 (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  cfv 5208  (class class class)co 5865  Basecbs 12428  +gcplusg 12492  .rcmulr 12493  CMndccmn 12884  mulGrpcmgp 12925  Ringcrg 12972  CRingccrg 12973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12431  df-slot 12432  df-base 12434  df-sets 12435  df-plusg 12505  df-mulr 12506  df-0g 12628  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-grp 12741  df-cmn 12886  df-mgp 12926  df-ring 12974  df-cring 12975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator