ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgass3 GIF version

Theorem mulgass3 13641
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass3.b 𝐵 = (Base‘𝑅)
mulgass3.m · = (.g𝑅)
mulgass3.t × = (.r𝑅)
Assertion
Ref Expression
mulgass3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌)))

Proof of Theorem mulgass3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . . 6 (oppr𝑅) = (oppr𝑅)
21opprring 13635 . . . . 5 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
32adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (oppr𝑅) ∈ Ring)
4 simpr1 1005 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑁 ∈ ℤ)
5 simpr3 1007 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
6 mulgass3.b . . . . . . 7 𝐵 = (Base‘𝑅)
71, 6opprbasg 13631 . . . . . 6 (𝑅 ∈ Ring → 𝐵 = (Base‘(oppr𝑅)))
87adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐵 = (Base‘(oppr𝑅)))
95, 8eleqtrd 2275 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌 ∈ (Base‘(oppr𝑅)))
10 simpr2 1006 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
1110, 8eleqtrd 2275 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋 ∈ (Base‘(oppr𝑅)))
12 eqid 2196 . . . . 5 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
13 eqid 2196 . . . . 5 (.g‘(oppr𝑅)) = (.g‘(oppr𝑅))
14 eqid 2196 . . . . 5 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
1512, 13, 14mulgass2 13614 . . . 4 (((oppr𝑅) ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑌 ∈ (Base‘(oppr𝑅)) ∧ 𝑋 ∈ (Base‘(oppr𝑅)))) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑁(.g‘(oppr𝑅))(𝑌(.r‘(oppr𝑅))𝑋)))
163, 4, 9, 11, 15syl13anc 1251 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑁(.g‘(oppr𝑅))(𝑌(.r‘(oppr𝑅))𝑋)))
17 simpl 109 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑅 ∈ Ring)
183ringgrpd 13561 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (oppr𝑅) ∈ Grp)
1912, 13, 18, 4, 9mulgcld 13274 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁(.g‘(oppr𝑅))𝑌) ∈ (Base‘(oppr𝑅)))
2019, 8eleqtrrd 2276 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁(.g‘(oppr𝑅))𝑌) ∈ 𝐵)
21 mulgass3.t . . . . 5 × = (.r𝑅)
226, 21, 1, 14opprmulg 13627 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁(.g‘(oppr𝑅))𝑌) ∈ 𝐵𝑋𝐵) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)))
2317, 20, 10, 22syl3anc 1249 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)))
246, 21, 1, 14opprmulg 13627 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 × 𝑌))
2517, 5, 10, 24syl3anc 1249 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 × 𝑌))
2625oveq2d 5938 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁(.g‘(oppr𝑅))(𝑌(.r‘(oppr𝑅))𝑋)) = (𝑁(.g‘(oppr𝑅))(𝑋 × 𝑌)))
2716, 23, 263eqtr3d 2237 . 2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)) = (𝑁(.g‘(oppr𝑅))(𝑋 × 𝑌)))
28 mulgass3.m . . . . . 6 · = (.g𝑅)
2928a1i 9 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → · = (.g𝑅))
30 eqidd 2197 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (.g‘(oppr𝑅)) = (.g‘(oppr𝑅)))
316a1i 9 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐵 = (Base‘𝑅))
32 ssidd 3204 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐵𝐵)
33 eqid 2196 . . . . . . . 8 (+g𝑅) = (+g𝑅)
346, 33ringacl 13586 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
35343expb 1206 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
3635adantlr 477 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
371, 33oppraddg 13632 . . . . . . 7 (𝑅 ∈ Ring → (+g𝑅) = (+g‘(oppr𝑅)))
3837oveqdr 5950 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑅))𝑦))
3938adantr 276 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑅))𝑦))
4029, 30, 17, 3, 31, 8, 32, 36, 39mulgpropdg 13294 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → · = (.g‘(oppr𝑅)))
4140oveqd 5939 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁 · 𝑌) = (𝑁(.g‘(oppr𝑅))𝑌))
4241oveq2d 5938 . 2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)))
4340oveqd 5939 . 2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁 · (𝑋 × 𝑌)) = (𝑁(.g‘(oppr𝑅))(𝑋 × 𝑌)))
4427, 42, 433eqtr4d 2239 1 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  cz 9326  Basecbs 12678  +gcplusg 12755  .rcmulr 12756  .gcmg 13249  Ringcrg 13552  opprcoppr 13623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-tpos 6303  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-3 9050  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-mulg 13250  df-mgp 13477  df-ur 13516  df-ring 13554  df-oppr 13624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator