ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgass3 GIF version

Theorem mulgass3 13897
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass3.b 𝐵 = (Base‘𝑅)
mulgass3.m · = (.g𝑅)
mulgass3.t × = (.r𝑅)
Assertion
Ref Expression
mulgass3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌)))

Proof of Theorem mulgass3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . . . . 6 (oppr𝑅) = (oppr𝑅)
21opprring 13891 . . . . 5 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
32adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (oppr𝑅) ∈ Ring)
4 simpr1 1006 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑁 ∈ ℤ)
5 simpr3 1008 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
6 mulgass3.b . . . . . . 7 𝐵 = (Base‘𝑅)
71, 6opprbasg 13887 . . . . . 6 (𝑅 ∈ Ring → 𝐵 = (Base‘(oppr𝑅)))
87adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐵 = (Base‘(oppr𝑅)))
95, 8eleqtrd 2285 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌 ∈ (Base‘(oppr𝑅)))
10 simpr2 1007 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
1110, 8eleqtrd 2285 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋 ∈ (Base‘(oppr𝑅)))
12 eqid 2206 . . . . 5 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
13 eqid 2206 . . . . 5 (.g‘(oppr𝑅)) = (.g‘(oppr𝑅))
14 eqid 2206 . . . . 5 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
1512, 13, 14mulgass2 13870 . . . 4 (((oppr𝑅) ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑌 ∈ (Base‘(oppr𝑅)) ∧ 𝑋 ∈ (Base‘(oppr𝑅)))) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑁(.g‘(oppr𝑅))(𝑌(.r‘(oppr𝑅))𝑋)))
163, 4, 9, 11, 15syl13anc 1252 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑁(.g‘(oppr𝑅))(𝑌(.r‘(oppr𝑅))𝑋)))
17 simpl 109 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑅 ∈ Ring)
183ringgrpd 13817 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (oppr𝑅) ∈ Grp)
1912, 13, 18, 4, 9mulgcld 13530 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁(.g‘(oppr𝑅))𝑌) ∈ (Base‘(oppr𝑅)))
2019, 8eleqtrrd 2286 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁(.g‘(oppr𝑅))𝑌) ∈ 𝐵)
21 mulgass3.t . . . . 5 × = (.r𝑅)
226, 21, 1, 14opprmulg 13883 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁(.g‘(oppr𝑅))𝑌) ∈ 𝐵𝑋𝐵) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)))
2317, 20, 10, 22syl3anc 1250 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)))
246, 21, 1, 14opprmulg 13883 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 × 𝑌))
2517, 5, 10, 24syl3anc 1250 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 × 𝑌))
2625oveq2d 5970 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁(.g‘(oppr𝑅))(𝑌(.r‘(oppr𝑅))𝑋)) = (𝑁(.g‘(oppr𝑅))(𝑋 × 𝑌)))
2716, 23, 263eqtr3d 2247 . 2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)) = (𝑁(.g‘(oppr𝑅))(𝑋 × 𝑌)))
28 mulgass3.m . . . . . 6 · = (.g𝑅)
2928a1i 9 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → · = (.g𝑅))
30 eqidd 2207 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (.g‘(oppr𝑅)) = (.g‘(oppr𝑅)))
316a1i 9 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐵 = (Base‘𝑅))
32 ssidd 3216 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐵𝐵)
33 eqid 2206 . . . . . . . 8 (+g𝑅) = (+g𝑅)
346, 33ringacl 13842 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
35343expb 1207 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
3635adantlr 477 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
371, 33oppraddg 13888 . . . . . . 7 (𝑅 ∈ Ring → (+g𝑅) = (+g‘(oppr𝑅)))
3837oveqdr 5982 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑅))𝑦))
3938adantr 276 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑅))𝑦))
4029, 30, 17, 3, 31, 8, 32, 36, 39mulgpropdg 13550 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → · = (.g‘(oppr𝑅)))
4140oveqd 5971 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁 · 𝑌) = (𝑁(.g‘(oppr𝑅))𝑌))
4241oveq2d 5970 . 2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)))
4340oveqd 5971 . 2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁 · (𝑋 × 𝑌)) = (𝑁(.g‘(oppr𝑅))(𝑋 × 𝑌)))
4427, 42, 433eqtr4d 2249 1 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  cfv 5277  (class class class)co 5954  cz 9385  Basecbs 12882  +gcplusg 12959  .rcmulr 12960  .gcmg 13505  Ringcrg 13808  opprcoppr 13879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-tpos 6341  df-recs 6401  df-frec 6487  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-inn 9050  df-2 9108  df-3 9109  df-n0 9309  df-z 9386  df-uz 9662  df-fz 10144  df-seqfrec 10606  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-plusg 12972  df-mulr 12973  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-grp 13385  df-minusg 13386  df-mulg 13506  df-mgp 13733  df-ur 13772  df-ring 13810  df-oppr 13880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator