| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2196 |
. . . . . 6
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
| 2 | 1 | opprring 13635 |
. . . . 5
⊢ (𝑅 ∈ Ring →
(oppr‘𝑅) ∈ Ring) |
| 3 | 2 | adantr 276 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) →
(oppr‘𝑅) ∈ Ring) |
| 4 | | simpr1 1005 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑁 ∈ ℤ) |
| 5 | | simpr3 1007 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
| 6 | | mulgass3.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
| 7 | 1, 6 | opprbasg 13631 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝐵 =
(Base‘(oppr‘𝑅))) |
| 8 | 7 | adantr 276 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 =
(Base‘(oppr‘𝑅))) |
| 9 | 5, 8 | eleqtrd 2275 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈
(Base‘(oppr‘𝑅))) |
| 10 | | simpr2 1006 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
| 11 | 10, 8 | eleqtrd 2275 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈
(Base‘(oppr‘𝑅))) |
| 12 | | eqid 2196 |
. . . . 5
⊢
(Base‘(oppr‘𝑅)) =
(Base‘(oppr‘𝑅)) |
| 13 | | eqid 2196 |
. . . . 5
⊢
(.g‘(oppr‘𝑅)) =
(.g‘(oppr‘𝑅)) |
| 14 | | eqid 2196 |
. . . . 5
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) |
| 15 | 12, 13, 14 | mulgass2 13614 |
. . . 4
⊢
(((oppr‘𝑅) ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑌 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑋 ∈
(Base‘(oppr‘𝑅)))) → ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑁(.g‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋))) |
| 16 | 3, 4, 9, 11, 15 | syl13anc 1251 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑁(.g‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋))) |
| 17 | | simpl 109 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑅 ∈ Ring) |
| 18 | 3 | ringgrpd 13561 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) →
(oppr‘𝑅) ∈ Grp) |
| 19 | 12, 13, 18, 4, 9 | mulgcld 13274 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁(.g‘(oppr‘𝑅))𝑌) ∈ (Base‘(oppr‘𝑅))) |
| 20 | 19, 8 | eleqtrrd 2276 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁(.g‘(oppr‘𝑅))𝑌) ∈ 𝐵) |
| 21 | | mulgass3.t |
. . . . 5
⊢ × =
(.r‘𝑅) |
| 22 | 6, 21, 1, 14 | opprmulg 13627 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁(.g‘(oppr‘𝑅))𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌))) |
| 23 | 17, 20, 10, 22 | syl3anc 1249 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌))) |
| 24 | 6, 21, 1, 14 | opprmulg 13627 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌(.r‘(oppr‘𝑅))𝑋) = (𝑋 × 𝑌)) |
| 25 | 17, 5, 10, 24 | syl3anc 1249 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑌(.r‘(oppr‘𝑅))𝑋) = (𝑋 × 𝑌)) |
| 26 | 25 | oveq2d 5938 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁(.g‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋)) = (𝑁(.g‘(oppr‘𝑅))(𝑋 × 𝑌))) |
| 27 | 16, 23, 26 | 3eqtr3d 2237 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌)) = (𝑁(.g‘(oppr‘𝑅))(𝑋 × 𝑌))) |
| 28 | | mulgass3.m |
. . . . . 6
⊢ · =
(.g‘𝑅) |
| 29 | 28 | a1i 9 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → · =
(.g‘𝑅)) |
| 30 | | eqidd 2197 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) →
(.g‘(oppr‘𝑅)) =
(.g‘(oppr‘𝑅))) |
| 31 | 6 | a1i 9 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 = (Base‘𝑅)) |
| 32 | | ssidd 3204 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 ⊆ 𝐵) |
| 33 | | eqid 2196 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 34 | 6, 33 | ringacl 13586 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑅)𝑦) ∈ 𝐵) |
| 35 | 34 | 3expb 1206 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) ∈ 𝐵) |
| 36 | 35 | adantlr 477 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) ∈ 𝐵) |
| 37 | 1, 33 | oppraddg 13632 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(+g‘𝑅) =
(+g‘(oppr‘𝑅))) |
| 38 | 37 | oveqdr 5950 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑅))𝑦)) |
| 39 | 38 | adantr 276 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑅))𝑦)) |
| 40 | 29, 30, 17, 3, 31, 8, 32, 36, 39 | mulgpropdg 13294 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → · =
(.g‘(oppr‘𝑅))) |
| 41 | 40 | oveqd 5939 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁 · 𝑌) = (𝑁(.g‘(oppr‘𝑅))𝑌)) |
| 42 | 41 | oveq2d 5938 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌))) |
| 43 | 40 | oveqd 5939 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁 · (𝑋 × 𝑌)) = (𝑁(.g‘(oppr‘𝑅))(𝑋 × 𝑌))) |
| 44 | 27, 42, 43 | 3eqtr4d 2239 |
1
⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌))) |