ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgass3 GIF version

Theorem mulgass3 13584
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass3.b 𝐵 = (Base‘𝑅)
mulgass3.m · = (.g𝑅)
mulgass3.t × = (.r𝑅)
Assertion
Ref Expression
mulgass3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌)))

Proof of Theorem mulgass3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . . . 6 (oppr𝑅) = (oppr𝑅)
21opprring 13578 . . . . 5 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
32adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (oppr𝑅) ∈ Ring)
4 simpr1 1005 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑁 ∈ ℤ)
5 simpr3 1007 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
6 mulgass3.b . . . . . . 7 𝐵 = (Base‘𝑅)
71, 6opprbasg 13574 . . . . . 6 (𝑅 ∈ Ring → 𝐵 = (Base‘(oppr𝑅)))
87adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐵 = (Base‘(oppr𝑅)))
95, 8eleqtrd 2272 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌 ∈ (Base‘(oppr𝑅)))
10 simpr2 1006 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
1110, 8eleqtrd 2272 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋 ∈ (Base‘(oppr𝑅)))
12 eqid 2193 . . . . 5 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
13 eqid 2193 . . . . 5 (.g‘(oppr𝑅)) = (.g‘(oppr𝑅))
14 eqid 2193 . . . . 5 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
1512, 13, 14mulgass2 13557 . . . 4 (((oppr𝑅) ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑌 ∈ (Base‘(oppr𝑅)) ∧ 𝑋 ∈ (Base‘(oppr𝑅)))) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑁(.g‘(oppr𝑅))(𝑌(.r‘(oppr𝑅))𝑋)))
163, 4, 9, 11, 15syl13anc 1251 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑁(.g‘(oppr𝑅))(𝑌(.r‘(oppr𝑅))𝑋)))
17 simpl 109 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑅 ∈ Ring)
183ringgrpd 13504 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (oppr𝑅) ∈ Grp)
1912, 13, 18, 4, 9mulgcld 13217 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁(.g‘(oppr𝑅))𝑌) ∈ (Base‘(oppr𝑅)))
2019, 8eleqtrrd 2273 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁(.g‘(oppr𝑅))𝑌) ∈ 𝐵)
21 mulgass3.t . . . . 5 × = (.r𝑅)
226, 21, 1, 14opprmulg 13570 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁(.g‘(oppr𝑅))𝑌) ∈ 𝐵𝑋𝐵) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)))
2317, 20, 10, 22syl3anc 1249 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁(.g‘(oppr𝑅))𝑌)(.r‘(oppr𝑅))𝑋) = (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)))
246, 21, 1, 14opprmulg 13570 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 × 𝑌))
2517, 5, 10, 24syl3anc 1249 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 × 𝑌))
2625oveq2d 5935 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁(.g‘(oppr𝑅))(𝑌(.r‘(oppr𝑅))𝑋)) = (𝑁(.g‘(oppr𝑅))(𝑋 × 𝑌)))
2716, 23, 263eqtr3d 2234 . 2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)) = (𝑁(.g‘(oppr𝑅))(𝑋 × 𝑌)))
28 mulgass3.m . . . . . 6 · = (.g𝑅)
2928a1i 9 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → · = (.g𝑅))
30 eqidd 2194 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (.g‘(oppr𝑅)) = (.g‘(oppr𝑅)))
316a1i 9 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐵 = (Base‘𝑅))
32 ssidd 3201 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐵𝐵)
33 eqid 2193 . . . . . . . 8 (+g𝑅) = (+g𝑅)
346, 33ringacl 13529 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
35343expb 1206 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
3635adantlr 477 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
371, 33oppraddg 13575 . . . . . . 7 (𝑅 ∈ Ring → (+g𝑅) = (+g‘(oppr𝑅)))
3837oveqdr 5947 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑅))𝑦))
3938adantr 276 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑅))𝑦))
4029, 30, 17, 3, 31, 8, 32, 36, 39mulgpropdg 13237 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → · = (.g‘(oppr𝑅)))
4140oveqd 5936 . . 3 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁 · 𝑌) = (𝑁(.g‘(oppr𝑅))𝑌))
4241oveq2d 5935 . 2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑋 × (𝑁(.g‘(oppr𝑅))𝑌)))
4340oveqd 5936 . 2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑁 · (𝑋 × 𝑌)) = (𝑁(.g‘(oppr𝑅))(𝑋 × 𝑌)))
4427, 42, 433eqtr4d 2236 1 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  cz 9320  Basecbs 12621  +gcplusg 12698  .rcmulr 12699  .gcmg 13192  Ringcrg 13495  opprcoppr 13566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-tpos 6300  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-2 9043  df-3 9044  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-seqfrec 10522  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-mulg 13193  df-mgp 13420  df-ur 13459  df-ring 13497  df-oppr 13567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator