![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nndceq0 | GIF version |
Description: A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.) |
Ref | Expression |
---|---|
nndceq0 | ⊢ (𝐴 ∈ ω → DECID 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2106 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅)) | |
2 | 1 | notbid 633 | . . . 4 ⊢ (𝑥 = ∅ → (¬ 𝑥 = ∅ ↔ ¬ ∅ = ∅)) |
3 | 1, 2 | orbi12d 748 | . . 3 ⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (∅ = ∅ ∨ ¬ ∅ = ∅))) |
4 | eqeq1 2106 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) | |
5 | 4 | notbid 633 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 = ∅ ↔ ¬ 𝑦 = ∅)) |
6 | 4, 5 | orbi12d 748 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (𝑦 = ∅ ∨ ¬ 𝑦 = ∅))) |
7 | eqeq1 2106 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝑥 = ∅ ↔ suc 𝑦 = ∅)) | |
8 | 7 | notbid 633 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (¬ 𝑥 = ∅ ↔ ¬ suc 𝑦 = ∅)) |
9 | 7, 8 | orbi12d 748 | . . 3 ⊢ (𝑥 = suc 𝑦 → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (suc 𝑦 = ∅ ∨ ¬ suc 𝑦 = ∅))) |
10 | eqeq1 2106 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
11 | 10 | notbid 633 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝑥 = ∅ ↔ ¬ 𝐴 = ∅)) |
12 | 10, 11 | orbi12d 748 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅))) |
13 | eqid 2100 | . . . 4 ⊢ ∅ = ∅ | |
14 | 13 | orci 691 | . . 3 ⊢ (∅ = ∅ ∨ ¬ ∅ = ∅) |
15 | peano3 4448 | . . . . . 6 ⊢ (𝑦 ∈ ω → suc 𝑦 ≠ ∅) | |
16 | 15 | neneqd 2288 | . . . . 5 ⊢ (𝑦 ∈ ω → ¬ suc 𝑦 = ∅) |
17 | 16 | olcd 694 | . . . 4 ⊢ (𝑦 ∈ ω → (suc 𝑦 = ∅ ∨ ¬ suc 𝑦 = ∅)) |
18 | 17 | a1d 22 | . . 3 ⊢ (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ¬ 𝑦 = ∅) → (suc 𝑦 = ∅ ∨ ¬ suc 𝑦 = ∅))) |
19 | 3, 6, 9, 12, 14, 18 | finds 4452 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) |
20 | df-dc 787 | . 2 ⊢ (DECID 𝐴 = ∅ ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) | |
21 | 19, 20 | sylibr 133 | 1 ⊢ (𝐴 ∈ ω → DECID 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 670 DECID wdc 786 = wceq 1299 ∈ wcel 1448 ∅c0 3310 suc csuc 4225 ωcom 4442 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-iinf 4440 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-rex 2381 df-v 2643 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-uni 3684 df-int 3719 df-suc 4231 df-iom 4443 |
This theorem is referenced by: omp1eomlem 6894 ctmlemr 6908 elni2 7023 indpi 7051 nnsf 12783 peano4nninf 12784 |
Copyright terms: Public domain | W3C validator |