| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nndceq0 | GIF version | ||
| Description: A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.) |
| Ref | Expression |
|---|---|
| nndceq0 | ⊢ (𝐴 ∈ ω → DECID 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2236 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅)) | |
| 2 | 1 | notbid 671 | . . . 4 ⊢ (𝑥 = ∅ → (¬ 𝑥 = ∅ ↔ ¬ ∅ = ∅)) |
| 3 | 1, 2 | orbi12d 798 | . . 3 ⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (∅ = ∅ ∨ ¬ ∅ = ∅))) |
| 4 | eqeq1 2236 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) | |
| 5 | 4 | notbid 671 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 = ∅ ↔ ¬ 𝑦 = ∅)) |
| 6 | 4, 5 | orbi12d 798 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (𝑦 = ∅ ∨ ¬ 𝑦 = ∅))) |
| 7 | eqeq1 2236 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝑥 = ∅ ↔ suc 𝑦 = ∅)) | |
| 8 | 7 | notbid 671 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (¬ 𝑥 = ∅ ↔ ¬ suc 𝑦 = ∅)) |
| 9 | 7, 8 | orbi12d 798 | . . 3 ⊢ (𝑥 = suc 𝑦 → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (suc 𝑦 = ∅ ∨ ¬ suc 𝑦 = ∅))) |
| 10 | eqeq1 2236 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
| 11 | 10 | notbid 671 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝑥 = ∅ ↔ ¬ 𝐴 = ∅)) |
| 12 | 10, 11 | orbi12d 798 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅))) |
| 13 | eqid 2229 | . . . 4 ⊢ ∅ = ∅ | |
| 14 | 13 | orci 736 | . . 3 ⊢ (∅ = ∅ ∨ ¬ ∅ = ∅) |
| 15 | peano3 4688 | . . . . . 6 ⊢ (𝑦 ∈ ω → suc 𝑦 ≠ ∅) | |
| 16 | 15 | neneqd 2421 | . . . . 5 ⊢ (𝑦 ∈ ω → ¬ suc 𝑦 = ∅) |
| 17 | 16 | olcd 739 | . . . 4 ⊢ (𝑦 ∈ ω → (suc 𝑦 = ∅ ∨ ¬ suc 𝑦 = ∅)) |
| 18 | 17 | a1d 22 | . . 3 ⊢ (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ¬ 𝑦 = ∅) → (suc 𝑦 = ∅ ∨ ¬ suc 𝑦 = ∅))) |
| 19 | 3, 6, 9, 12, 14, 18 | finds 4692 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) |
| 20 | df-dc 840 | . 2 ⊢ (DECID 𝐴 = ∅ ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) | |
| 21 | 19, 20 | sylibr 134 | 1 ⊢ (𝐴 ∈ ω → DECID 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 713 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ∅c0 3491 suc csuc 4456 ωcom 4682 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: omp1eomlem 7261 ctmlemr 7275 nnnninfeq2 7296 nninfisol 7300 elni2 7501 indpi 7529 nnsf 16371 peano4nninf 16372 |
| Copyright terms: Public domain | W3C validator |