| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nndceq0 | GIF version | ||
| Description: A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.) |
| Ref | Expression |
|---|---|
| nndceq0 | ⊢ (𝐴 ∈ ω → DECID 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2214 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅)) | |
| 2 | 1 | notbid 669 | . . . 4 ⊢ (𝑥 = ∅ → (¬ 𝑥 = ∅ ↔ ¬ ∅ = ∅)) |
| 3 | 1, 2 | orbi12d 795 | . . 3 ⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (∅ = ∅ ∨ ¬ ∅ = ∅))) |
| 4 | eqeq1 2214 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) | |
| 5 | 4 | notbid 669 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 = ∅ ↔ ¬ 𝑦 = ∅)) |
| 6 | 4, 5 | orbi12d 795 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (𝑦 = ∅ ∨ ¬ 𝑦 = ∅))) |
| 7 | eqeq1 2214 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝑥 = ∅ ↔ suc 𝑦 = ∅)) | |
| 8 | 7 | notbid 669 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (¬ 𝑥 = ∅ ↔ ¬ suc 𝑦 = ∅)) |
| 9 | 7, 8 | orbi12d 795 | . . 3 ⊢ (𝑥 = suc 𝑦 → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (suc 𝑦 = ∅ ∨ ¬ suc 𝑦 = ∅))) |
| 10 | eqeq1 2214 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
| 11 | 10 | notbid 669 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝑥 = ∅ ↔ ¬ 𝐴 = ∅)) |
| 12 | 10, 11 | orbi12d 795 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅))) |
| 13 | eqid 2207 | . . . 4 ⊢ ∅ = ∅ | |
| 14 | 13 | orci 733 | . . 3 ⊢ (∅ = ∅ ∨ ¬ ∅ = ∅) |
| 15 | peano3 4662 | . . . . . 6 ⊢ (𝑦 ∈ ω → suc 𝑦 ≠ ∅) | |
| 16 | 15 | neneqd 2399 | . . . . 5 ⊢ (𝑦 ∈ ω → ¬ suc 𝑦 = ∅) |
| 17 | 16 | olcd 736 | . . . 4 ⊢ (𝑦 ∈ ω → (suc 𝑦 = ∅ ∨ ¬ suc 𝑦 = ∅)) |
| 18 | 17 | a1d 22 | . . 3 ⊢ (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ¬ 𝑦 = ∅) → (suc 𝑦 = ∅ ∨ ¬ suc 𝑦 = ∅))) |
| 19 | 3, 6, 9, 12, 14, 18 | finds 4666 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) |
| 20 | df-dc 837 | . 2 ⊢ (DECID 𝐴 = ∅ ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) | |
| 21 | 19, 20 | sylibr 134 | 1 ⊢ (𝐴 ∈ ω → DECID 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2178 ∅c0 3468 suc csuc 4430 ωcom 4656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: omp1eomlem 7222 ctmlemr 7236 nnnninfeq2 7257 nninfisol 7261 elni2 7462 indpi 7490 nnsf 16144 peano4nninf 16145 |
| Copyright terms: Public domain | W3C validator |