Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nndceq0 | GIF version |
Description: A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.) |
Ref | Expression |
---|---|
nndceq0 | ⊢ (𝐴 ∈ ω → DECID 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2177 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅)) | |
2 | 1 | notbid 662 | . . . 4 ⊢ (𝑥 = ∅ → (¬ 𝑥 = ∅ ↔ ¬ ∅ = ∅)) |
3 | 1, 2 | orbi12d 788 | . . 3 ⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (∅ = ∅ ∨ ¬ ∅ = ∅))) |
4 | eqeq1 2177 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) | |
5 | 4 | notbid 662 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 = ∅ ↔ ¬ 𝑦 = ∅)) |
6 | 4, 5 | orbi12d 788 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (𝑦 = ∅ ∨ ¬ 𝑦 = ∅))) |
7 | eqeq1 2177 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝑥 = ∅ ↔ suc 𝑦 = ∅)) | |
8 | 7 | notbid 662 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (¬ 𝑥 = ∅ ↔ ¬ suc 𝑦 = ∅)) |
9 | 7, 8 | orbi12d 788 | . . 3 ⊢ (𝑥 = suc 𝑦 → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (suc 𝑦 = ∅ ∨ ¬ suc 𝑦 = ∅))) |
10 | eqeq1 2177 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
11 | 10 | notbid 662 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝑥 = ∅ ↔ ¬ 𝐴 = ∅)) |
12 | 10, 11 | orbi12d 788 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ ¬ 𝑥 = ∅) ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅))) |
13 | eqid 2170 | . . . 4 ⊢ ∅ = ∅ | |
14 | 13 | orci 726 | . . 3 ⊢ (∅ = ∅ ∨ ¬ ∅ = ∅) |
15 | peano3 4578 | . . . . . 6 ⊢ (𝑦 ∈ ω → suc 𝑦 ≠ ∅) | |
16 | 15 | neneqd 2361 | . . . . 5 ⊢ (𝑦 ∈ ω → ¬ suc 𝑦 = ∅) |
17 | 16 | olcd 729 | . . . 4 ⊢ (𝑦 ∈ ω → (suc 𝑦 = ∅ ∨ ¬ suc 𝑦 = ∅)) |
18 | 17 | a1d 22 | . . 3 ⊢ (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ¬ 𝑦 = ∅) → (suc 𝑦 = ∅ ∨ ¬ suc 𝑦 = ∅))) |
19 | 3, 6, 9, 12, 14, 18 | finds 4582 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) |
20 | df-dc 830 | . 2 ⊢ (DECID 𝐴 = ∅ ↔ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)) | |
21 | 19, 20 | sylibr 133 | 1 ⊢ (𝐴 ∈ ω → DECID 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 703 DECID wdc 829 = wceq 1348 ∈ wcel 2141 ∅c0 3414 suc csuc 4348 ωcom 4572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-uni 3795 df-int 3830 df-suc 4354 df-iom 4573 |
This theorem is referenced by: omp1eomlem 7067 ctmlemr 7081 nnnninfeq2 7101 nninfisol 7105 elni2 7263 indpi 7291 nnsf 13960 peano4nninf 13961 |
Copyright terms: Public domain | W3C validator |