Step | Hyp | Ref
| Expression |
1 | | sseq1 3170 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
2 | | suceq 4385 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴) |
3 | 2 | sseq1d 3176 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (suc 𝑥 ⊆ suc 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
4 | 1, 3 | imbi12d 233 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵))) |
5 | 4 | imbi2d 229 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 ⊆ 𝐵 → suc 𝑥 ⊆ suc 𝐵)) ↔ (𝐵 ∈ ω → (𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵)))) |
6 | | sseq1 3170 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝑥 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) |
7 | | suceq 4385 |
. . . . . . 7
⊢ (𝑥 = ∅ → suc 𝑥 = suc ∅) |
8 | 7 | sseq1d 3176 |
. . . . . 6
⊢ (𝑥 = ∅ → (suc 𝑥 ⊆ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵)) |
9 | 6, 8 | imbi12d 233 |
. . . . 5
⊢ (𝑥 = ∅ → ((𝑥 ⊆ 𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (∅ ⊆ 𝐵 → suc ∅ ⊆ suc 𝐵))) |
10 | | sseq1 3170 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵)) |
11 | | suceq 4385 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) |
12 | 11 | sseq1d 3176 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (suc 𝑥 ⊆ suc 𝐵 ↔ suc 𝑦 ⊆ suc 𝐵)) |
13 | 10, 12 | imbi12d 233 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ 𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵))) |
14 | | sseq1 3170 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝑥 ⊆ 𝐵 ↔ suc 𝑦 ⊆ 𝐵)) |
15 | | suceq 4385 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦) |
16 | 15 | sseq1d 3176 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (suc 𝑥 ⊆ suc 𝐵 ↔ suc suc 𝑦 ⊆ suc 𝐵)) |
17 | 14, 16 | imbi12d 233 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → ((𝑥 ⊆ 𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (suc 𝑦 ⊆ 𝐵 → suc suc 𝑦 ⊆ suc 𝐵))) |
18 | | peano3 4578 |
. . . . . . . . 9
⊢ (𝐵 ∈ ω → suc 𝐵 ≠ ∅) |
19 | 18 | neneqd 2361 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → ¬ suc
𝐵 =
∅) |
20 | | peano2 4577 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ω → suc 𝐵 ∈
ω) |
21 | | 0elnn 4601 |
. . . . . . . . . 10
⊢ (suc
𝐵 ∈ ω →
(suc 𝐵 = ∅ ∨
∅ ∈ suc 𝐵)) |
22 | 20, 21 | syl 14 |
. . . . . . . . 9
⊢ (𝐵 ∈ ω → (suc
𝐵 = ∅ ∨ ∅
∈ suc 𝐵)) |
23 | 22 | ord 719 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → (¬
suc 𝐵 = ∅ →
∅ ∈ suc 𝐵)) |
24 | 19, 23 | mpd 13 |
. . . . . . 7
⊢ (𝐵 ∈ ω → ∅
∈ suc 𝐵) |
25 | | nnord 4594 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → Ord 𝐵) |
26 | | ordsucim 4482 |
. . . . . . . 8
⊢ (Ord
𝐵 → Ord suc 𝐵) |
27 | | 0ex 4114 |
. . . . . . . . 9
⊢ ∅
∈ V |
28 | | ordelsuc 4487 |
. . . . . . . . 9
⊢ ((∅
∈ V ∧ Ord suc 𝐵)
→ (∅ ∈ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵)) |
29 | 27, 28 | mpan 422 |
. . . . . . . 8
⊢ (Ord suc
𝐵 → (∅ ∈
suc 𝐵 ↔ suc ∅
⊆ suc 𝐵)) |
30 | 25, 26, 29 | 3syl 17 |
. . . . . . 7
⊢ (𝐵 ∈ ω → (∅
∈ suc 𝐵 ↔ suc
∅ ⊆ suc 𝐵)) |
31 | 24, 30 | mpbid 146 |
. . . . . 6
⊢ (𝐵 ∈ ω → suc
∅ ⊆ suc 𝐵) |
32 | 31 | a1d 22 |
. . . . 5
⊢ (𝐵 ∈ ω → (∅
⊆ 𝐵 → suc
∅ ⊆ suc 𝐵)) |
33 | | simp3 994 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → suc 𝑦 ⊆ 𝐵) |
34 | | simp1l 1016 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → 𝑦 ∈ ω) |
35 | | simp1r 1017 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → 𝐵 ∈ ω) |
36 | 35, 25 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → Ord 𝐵) |
37 | | ordelsuc 4487 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ω ∧ Ord 𝐵) → (𝑦 ∈ 𝐵 ↔ suc 𝑦 ⊆ 𝐵)) |
38 | 34, 36, 37 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → (𝑦 ∈ 𝐵 ↔ suc 𝑦 ⊆ 𝐵)) |
39 | 33, 38 | mpbird 166 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → 𝑦 ∈ 𝐵) |
40 | | nnsucelsuc 6468 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ω → (𝑦 ∈ 𝐵 ↔ suc 𝑦 ∈ suc 𝐵)) |
41 | 35, 40 | syl 14 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → (𝑦 ∈ 𝐵 ↔ suc 𝑦 ∈ suc 𝐵)) |
42 | 39, 41 | mpbid 146 |
. . . . . . . 8
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → suc 𝑦 ∈ suc 𝐵) |
43 | | peano2 4577 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
44 | 34, 43 | syl 14 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → suc 𝑦 ∈ ω) |
45 | 36, 26 | syl 14 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → Ord suc 𝐵) |
46 | | ordelsuc 4487 |
. . . . . . . . 9
⊢ ((suc
𝑦 ∈ ω ∧ Ord
suc 𝐵) → (suc 𝑦 ∈ suc 𝐵 ↔ suc suc 𝑦 ⊆ suc 𝐵)) |
47 | 44, 45, 46 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → (suc 𝑦 ∈ suc 𝐵 ↔ suc suc 𝑦 ⊆ suc 𝐵)) |
48 | 42, 47 | mpbid 146 |
. . . . . . 7
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → suc suc 𝑦 ⊆ suc 𝐵) |
49 | 48 | 3expia 1200 |
. . . . . 6
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵)) → (suc 𝑦 ⊆ 𝐵 → suc suc 𝑦 ⊆ suc 𝐵)) |
50 | 49 | exp31 362 |
. . . . 5
⊢ (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) → (suc 𝑦 ⊆ 𝐵 → suc suc 𝑦 ⊆ suc 𝐵)))) |
51 | 9, 13, 17, 32, 50 | finds2 4583 |
. . . 4
⊢ (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 ⊆ 𝐵 → suc 𝑥 ⊆ suc 𝐵))) |
52 | 5, 51 | vtoclga 2796 |
. . 3
⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵))) |
53 | 52 | imp 123 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵)) |
54 | | nnon 4592 |
. . 3
⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
55 | | onsucsssucr 4491 |
. . 3
⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
56 | 54, 25, 55 | syl2an 287 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc
𝐴 ⊆ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
57 | 53, 56 | impbid 128 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |