| Step | Hyp | Ref
| Expression |
| 1 | | sseq1 3206 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| 2 | | suceq 4437 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴) |
| 3 | 2 | sseq1d 3212 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (suc 𝑥 ⊆ suc 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
| 4 | 1, 3 | imbi12d 234 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵))) |
| 5 | 4 | imbi2d 230 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 ⊆ 𝐵 → suc 𝑥 ⊆ suc 𝐵)) ↔ (𝐵 ∈ ω → (𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵)))) |
| 6 | | sseq1 3206 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝑥 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) |
| 7 | | suceq 4437 |
. . . . . . 7
⊢ (𝑥 = ∅ → suc 𝑥 = suc ∅) |
| 8 | 7 | sseq1d 3212 |
. . . . . 6
⊢ (𝑥 = ∅ → (suc 𝑥 ⊆ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵)) |
| 9 | 6, 8 | imbi12d 234 |
. . . . 5
⊢ (𝑥 = ∅ → ((𝑥 ⊆ 𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (∅ ⊆ 𝐵 → suc ∅ ⊆ suc 𝐵))) |
| 10 | | sseq1 3206 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵)) |
| 11 | | suceq 4437 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) |
| 12 | 11 | sseq1d 3212 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (suc 𝑥 ⊆ suc 𝐵 ↔ suc 𝑦 ⊆ suc 𝐵)) |
| 13 | 10, 12 | imbi12d 234 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ 𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵))) |
| 14 | | sseq1 3206 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝑥 ⊆ 𝐵 ↔ suc 𝑦 ⊆ 𝐵)) |
| 15 | | suceq 4437 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦) |
| 16 | 15 | sseq1d 3212 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (suc 𝑥 ⊆ suc 𝐵 ↔ suc suc 𝑦 ⊆ suc 𝐵)) |
| 17 | 14, 16 | imbi12d 234 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → ((𝑥 ⊆ 𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (suc 𝑦 ⊆ 𝐵 → suc suc 𝑦 ⊆ suc 𝐵))) |
| 18 | | peano3 4632 |
. . . . . . . . 9
⊢ (𝐵 ∈ ω → suc 𝐵 ≠ ∅) |
| 19 | 18 | neneqd 2388 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → ¬ suc
𝐵 =
∅) |
| 20 | | peano2 4631 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ω → suc 𝐵 ∈
ω) |
| 21 | | 0elnn 4655 |
. . . . . . . . . 10
⊢ (suc
𝐵 ∈ ω →
(suc 𝐵 = ∅ ∨
∅ ∈ suc 𝐵)) |
| 22 | 20, 21 | syl 14 |
. . . . . . . . 9
⊢ (𝐵 ∈ ω → (suc
𝐵 = ∅ ∨ ∅
∈ suc 𝐵)) |
| 23 | 22 | ord 725 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → (¬
suc 𝐵 = ∅ →
∅ ∈ suc 𝐵)) |
| 24 | 19, 23 | mpd 13 |
. . . . . . 7
⊢ (𝐵 ∈ ω → ∅
∈ suc 𝐵) |
| 25 | | nnord 4648 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → Ord 𝐵) |
| 26 | | ordsucim 4536 |
. . . . . . . 8
⊢ (Ord
𝐵 → Ord suc 𝐵) |
| 27 | | 0ex 4160 |
. . . . . . . . 9
⊢ ∅
∈ V |
| 28 | | ordelsuc 4541 |
. . . . . . . . 9
⊢ ((∅
∈ V ∧ Ord suc 𝐵)
→ (∅ ∈ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵)) |
| 29 | 27, 28 | mpan 424 |
. . . . . . . 8
⊢ (Ord suc
𝐵 → (∅ ∈
suc 𝐵 ↔ suc ∅
⊆ suc 𝐵)) |
| 30 | 25, 26, 29 | 3syl 17 |
. . . . . . 7
⊢ (𝐵 ∈ ω → (∅
∈ suc 𝐵 ↔ suc
∅ ⊆ suc 𝐵)) |
| 31 | 24, 30 | mpbid 147 |
. . . . . 6
⊢ (𝐵 ∈ ω → suc
∅ ⊆ suc 𝐵) |
| 32 | 31 | a1d 22 |
. . . . 5
⊢ (𝐵 ∈ ω → (∅
⊆ 𝐵 → suc
∅ ⊆ suc 𝐵)) |
| 33 | | simp3 1001 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → suc 𝑦 ⊆ 𝐵) |
| 34 | | simp1l 1023 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → 𝑦 ∈ ω) |
| 35 | | simp1r 1024 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → 𝐵 ∈ ω) |
| 36 | 35, 25 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → Ord 𝐵) |
| 37 | | ordelsuc 4541 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ω ∧ Ord 𝐵) → (𝑦 ∈ 𝐵 ↔ suc 𝑦 ⊆ 𝐵)) |
| 38 | 34, 36, 37 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → (𝑦 ∈ 𝐵 ↔ suc 𝑦 ⊆ 𝐵)) |
| 39 | 33, 38 | mpbird 167 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → 𝑦 ∈ 𝐵) |
| 40 | | nnsucelsuc 6549 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ω → (𝑦 ∈ 𝐵 ↔ suc 𝑦 ∈ suc 𝐵)) |
| 41 | 35, 40 | syl 14 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → (𝑦 ∈ 𝐵 ↔ suc 𝑦 ∈ suc 𝐵)) |
| 42 | 39, 41 | mpbid 147 |
. . . . . . . 8
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → suc 𝑦 ∈ suc 𝐵) |
| 43 | | peano2 4631 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
| 44 | 34, 43 | syl 14 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → suc 𝑦 ∈ ω) |
| 45 | 36, 26 | syl 14 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → Ord suc 𝐵) |
| 46 | | ordelsuc 4541 |
. . . . . . . . 9
⊢ ((suc
𝑦 ∈ ω ∧ Ord
suc 𝐵) → (suc 𝑦 ∈ suc 𝐵 ↔ suc suc 𝑦 ⊆ suc 𝐵)) |
| 47 | 44, 45, 46 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → (suc 𝑦 ∈ suc 𝐵 ↔ suc suc 𝑦 ⊆ suc 𝐵)) |
| 48 | 42, 47 | mpbid 147 |
. . . . . . 7
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦 ⊆ 𝐵) → suc suc 𝑦 ⊆ suc 𝐵) |
| 49 | 48 | 3expia 1207 |
. . . . . 6
⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵)) → (suc 𝑦 ⊆ 𝐵 → suc suc 𝑦 ⊆ suc 𝐵)) |
| 50 | 49 | exp31 364 |
. . . . 5
⊢ (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 ⊆ 𝐵 → suc 𝑦 ⊆ suc 𝐵) → (suc 𝑦 ⊆ 𝐵 → suc suc 𝑦 ⊆ suc 𝐵)))) |
| 51 | 9, 13, 17, 32, 50 | finds2 4637 |
. . . 4
⊢ (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 ⊆ 𝐵 → suc 𝑥 ⊆ suc 𝐵))) |
| 52 | 5, 51 | vtoclga 2830 |
. . 3
⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵))) |
| 53 | 52 | imp 124 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵)) |
| 54 | | nnon 4646 |
. . 3
⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
| 55 | | onsucsssucr 4545 |
. . 3
⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
| 56 | 54, 25, 55 | syl2an 289 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc
𝐴 ⊆ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
| 57 | 53, 56 | impbid 129 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |