ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucsssuc GIF version

Theorem nnsucsssuc 6492
Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4508, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4526. (Contributed by Jim Kingdon, 25-Aug-2019.)
Assertion
Ref Expression
nnsucsssuc ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))

Proof of Theorem nnsucsssuc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3178 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
2 suceq 4402 . . . . . . 7 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
32sseq1d 3184 . . . . . 6 (𝑥 = 𝐴 → (suc 𝑥 ⊆ suc 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
41, 3imbi12d 234 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵)))
54imbi2d 230 . . . 4 (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵)) ↔ (𝐵 ∈ ω → (𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵))))
6 sseq1 3178 . . . . . 6 (𝑥 = ∅ → (𝑥𝐵 ↔ ∅ ⊆ 𝐵))
7 suceq 4402 . . . . . . 7 (𝑥 = ∅ → suc 𝑥 = suc ∅)
87sseq1d 3184 . . . . . 6 (𝑥 = ∅ → (suc 𝑥 ⊆ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵))
96, 8imbi12d 234 . . . . 5 (𝑥 = ∅ → ((𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (∅ ⊆ 𝐵 → suc ∅ ⊆ suc 𝐵)))
10 sseq1 3178 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
11 suceq 4402 . . . . . . 7 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1211sseq1d 3184 . . . . . 6 (𝑥 = 𝑦 → (suc 𝑥 ⊆ suc 𝐵 ↔ suc 𝑦 ⊆ suc 𝐵))
1310, 12imbi12d 234 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵)))
14 sseq1 3178 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥𝐵 ↔ suc 𝑦𝐵))
15 suceq 4402 . . . . . . 7 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1615sseq1d 3184 . . . . . 6 (𝑥 = suc 𝑦 → (suc 𝑥 ⊆ suc 𝐵 ↔ suc suc 𝑦 ⊆ suc 𝐵))
1714, 16imbi12d 234 . . . . 5 (𝑥 = suc 𝑦 → ((𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (suc 𝑦𝐵 → suc suc 𝑦 ⊆ suc 𝐵)))
18 peano3 4595 . . . . . . . . 9 (𝐵 ∈ ω → suc 𝐵 ≠ ∅)
1918neneqd 2368 . . . . . . . 8 (𝐵 ∈ ω → ¬ suc 𝐵 = ∅)
20 peano2 4594 . . . . . . . . . 10 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
21 0elnn 4618 . . . . . . . . . 10 (suc 𝐵 ∈ ω → (suc 𝐵 = ∅ ∨ ∅ ∈ suc 𝐵))
2220, 21syl 14 . . . . . . . . 9 (𝐵 ∈ ω → (suc 𝐵 = ∅ ∨ ∅ ∈ suc 𝐵))
2322ord 724 . . . . . . . 8 (𝐵 ∈ ω → (¬ suc 𝐵 = ∅ → ∅ ∈ suc 𝐵))
2419, 23mpd 13 . . . . . . 7 (𝐵 ∈ ω → ∅ ∈ suc 𝐵)
25 nnord 4611 . . . . . . . 8 (𝐵 ∈ ω → Ord 𝐵)
26 ordsucim 4499 . . . . . . . 8 (Ord 𝐵 → Ord suc 𝐵)
27 0ex 4130 . . . . . . . . 9 ∅ ∈ V
28 ordelsuc 4504 . . . . . . . . 9 ((∅ ∈ V ∧ Ord suc 𝐵) → (∅ ∈ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵))
2927, 28mpan 424 . . . . . . . 8 (Ord suc 𝐵 → (∅ ∈ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵))
3025, 26, 293syl 17 . . . . . . 7 (𝐵 ∈ ω → (∅ ∈ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵))
3124, 30mpbid 147 . . . . . 6 (𝐵 ∈ ω → suc ∅ ⊆ suc 𝐵)
3231a1d 22 . . . . 5 (𝐵 ∈ ω → (∅ ⊆ 𝐵 → suc ∅ ⊆ suc 𝐵))
33 simp3 999 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → suc 𝑦𝐵)
34 simp1l 1021 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → 𝑦 ∈ ω)
35 simp1r 1022 . . . . . . . . . . . 12 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → 𝐵 ∈ ω)
3635, 25syl 14 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → Ord 𝐵)
37 ordelsuc 4504 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ Ord 𝐵) → (𝑦𝐵 ↔ suc 𝑦𝐵))
3834, 36, 37syl2anc 411 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → (𝑦𝐵 ↔ suc 𝑦𝐵))
3933, 38mpbird 167 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → 𝑦𝐵)
40 nnsucelsuc 6491 . . . . . . . . . 10 (𝐵 ∈ ω → (𝑦𝐵 ↔ suc 𝑦 ∈ suc 𝐵))
4135, 40syl 14 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → (𝑦𝐵 ↔ suc 𝑦 ∈ suc 𝐵))
4239, 41mpbid 147 . . . . . . . 8 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → suc 𝑦 ∈ suc 𝐵)
43 peano2 4594 . . . . . . . . . 10 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
4434, 43syl 14 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → suc 𝑦 ∈ ω)
4536, 26syl 14 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → Ord suc 𝐵)
46 ordelsuc 4504 . . . . . . . . 9 ((suc 𝑦 ∈ ω ∧ Ord suc 𝐵) → (suc 𝑦 ∈ suc 𝐵 ↔ suc suc 𝑦 ⊆ suc 𝐵))
4744, 45, 46syl2anc 411 . . . . . . . 8 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → (suc 𝑦 ∈ suc 𝐵 ↔ suc suc 𝑦 ⊆ suc 𝐵))
4842, 47mpbid 147 . . . . . . 7 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → suc suc 𝑦 ⊆ suc 𝐵)
49483expia 1205 . . . . . 6 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵)) → (suc 𝑦𝐵 → suc suc 𝑦 ⊆ suc 𝐵))
5049exp31 364 . . . . 5 (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) → (suc 𝑦𝐵 → suc suc 𝑦 ⊆ suc 𝐵))))
519, 13, 17, 32, 50finds2 4600 . . . 4 (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵)))
525, 51vtoclga 2803 . . 3 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵)))
5352imp 124 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵))
54 nnon 4609 . . 3 (𝐴 ∈ ω → 𝐴 ∈ On)
55 onsucsssucr 4508 . . 3 ((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵𝐴𝐵))
5654, 25, 55syl2an 289 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ⊆ suc 𝐵𝐴𝐵))
5753, 56impbid 129 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148  Vcvv 2737  wss 3129  c0 3422  Ord word 4362  Oncon0 4363  suc csuc 4365  ωcom 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-uni 3810  df-int 3845  df-tr 4102  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590
This theorem is referenced by:  nnaword  6511  ennnfonelemk  12400  ennnfonelemkh  12412
  Copyright terms: Public domain W3C validator