ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucsssuc GIF version

Theorem nnsucsssuc 6559
Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4546, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4564. (Contributed by Jim Kingdon, 25-Aug-2019.)
Assertion
Ref Expression
nnsucsssuc ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))

Proof of Theorem nnsucsssuc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3207 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
2 suceq 4438 . . . . . . 7 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
32sseq1d 3213 . . . . . 6 (𝑥 = 𝐴 → (suc 𝑥 ⊆ suc 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
41, 3imbi12d 234 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵)))
54imbi2d 230 . . . 4 (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵)) ↔ (𝐵 ∈ ω → (𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵))))
6 sseq1 3207 . . . . . 6 (𝑥 = ∅ → (𝑥𝐵 ↔ ∅ ⊆ 𝐵))
7 suceq 4438 . . . . . . 7 (𝑥 = ∅ → suc 𝑥 = suc ∅)
87sseq1d 3213 . . . . . 6 (𝑥 = ∅ → (suc 𝑥 ⊆ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵))
96, 8imbi12d 234 . . . . 5 (𝑥 = ∅ → ((𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (∅ ⊆ 𝐵 → suc ∅ ⊆ suc 𝐵)))
10 sseq1 3207 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
11 suceq 4438 . . . . . . 7 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1211sseq1d 3213 . . . . . 6 (𝑥 = 𝑦 → (suc 𝑥 ⊆ suc 𝐵 ↔ suc 𝑦 ⊆ suc 𝐵))
1310, 12imbi12d 234 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵)))
14 sseq1 3207 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥𝐵 ↔ suc 𝑦𝐵))
15 suceq 4438 . . . . . . 7 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1615sseq1d 3213 . . . . . 6 (𝑥 = suc 𝑦 → (suc 𝑥 ⊆ suc 𝐵 ↔ suc suc 𝑦 ⊆ suc 𝐵))
1714, 16imbi12d 234 . . . . 5 (𝑥 = suc 𝑦 → ((𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (suc 𝑦𝐵 → suc suc 𝑦 ⊆ suc 𝐵)))
18 peano3 4633 . . . . . . . . 9 (𝐵 ∈ ω → suc 𝐵 ≠ ∅)
1918neneqd 2388 . . . . . . . 8 (𝐵 ∈ ω → ¬ suc 𝐵 = ∅)
20 peano2 4632 . . . . . . . . . 10 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
21 0elnn 4656 . . . . . . . . . 10 (suc 𝐵 ∈ ω → (suc 𝐵 = ∅ ∨ ∅ ∈ suc 𝐵))
2220, 21syl 14 . . . . . . . . 9 (𝐵 ∈ ω → (suc 𝐵 = ∅ ∨ ∅ ∈ suc 𝐵))
2322ord 725 . . . . . . . 8 (𝐵 ∈ ω → (¬ suc 𝐵 = ∅ → ∅ ∈ suc 𝐵))
2419, 23mpd 13 . . . . . . 7 (𝐵 ∈ ω → ∅ ∈ suc 𝐵)
25 nnord 4649 . . . . . . . 8 (𝐵 ∈ ω → Ord 𝐵)
26 ordsucim 4537 . . . . . . . 8 (Ord 𝐵 → Ord suc 𝐵)
27 0ex 4161 . . . . . . . . 9 ∅ ∈ V
28 ordelsuc 4542 . . . . . . . . 9 ((∅ ∈ V ∧ Ord suc 𝐵) → (∅ ∈ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵))
2927, 28mpan 424 . . . . . . . 8 (Ord suc 𝐵 → (∅ ∈ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵))
3025, 26, 293syl 17 . . . . . . 7 (𝐵 ∈ ω → (∅ ∈ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵))
3124, 30mpbid 147 . . . . . 6 (𝐵 ∈ ω → suc ∅ ⊆ suc 𝐵)
3231a1d 22 . . . . 5 (𝐵 ∈ ω → (∅ ⊆ 𝐵 → suc ∅ ⊆ suc 𝐵))
33 simp3 1001 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → suc 𝑦𝐵)
34 simp1l 1023 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → 𝑦 ∈ ω)
35 simp1r 1024 . . . . . . . . . . . 12 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → 𝐵 ∈ ω)
3635, 25syl 14 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → Ord 𝐵)
37 ordelsuc 4542 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ Ord 𝐵) → (𝑦𝐵 ↔ suc 𝑦𝐵))
3834, 36, 37syl2anc 411 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → (𝑦𝐵 ↔ suc 𝑦𝐵))
3933, 38mpbird 167 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → 𝑦𝐵)
40 nnsucelsuc 6558 . . . . . . . . . 10 (𝐵 ∈ ω → (𝑦𝐵 ↔ suc 𝑦 ∈ suc 𝐵))
4135, 40syl 14 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → (𝑦𝐵 ↔ suc 𝑦 ∈ suc 𝐵))
4239, 41mpbid 147 . . . . . . . 8 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → suc 𝑦 ∈ suc 𝐵)
43 peano2 4632 . . . . . . . . . 10 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
4434, 43syl 14 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → suc 𝑦 ∈ ω)
4536, 26syl 14 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → Ord suc 𝐵)
46 ordelsuc 4542 . . . . . . . . 9 ((suc 𝑦 ∈ ω ∧ Ord suc 𝐵) → (suc 𝑦 ∈ suc 𝐵 ↔ suc suc 𝑦 ⊆ suc 𝐵))
4744, 45, 46syl2anc 411 . . . . . . . 8 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → (suc 𝑦 ∈ suc 𝐵 ↔ suc suc 𝑦 ⊆ suc 𝐵))
4842, 47mpbid 147 . . . . . . 7 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → suc suc 𝑦 ⊆ suc 𝐵)
49483expia 1207 . . . . . 6 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵)) → (suc 𝑦𝐵 → suc suc 𝑦 ⊆ suc 𝐵))
5049exp31 364 . . . . 5 (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) → (suc 𝑦𝐵 → suc suc 𝑦 ⊆ suc 𝐵))))
519, 13, 17, 32, 50finds2 4638 . . . 4 (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵)))
525, 51vtoclga 2830 . . 3 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵)))
5352imp 124 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵))
54 nnon 4647 . . 3 (𝐴 ∈ ω → 𝐴 ∈ On)
55 onsucsssucr 4546 . . 3 ((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵𝐴𝐵))
5654, 25, 55syl2an 289 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ⊆ suc 𝐵𝐴𝐵))
5753, 56impbid 129 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  c0 3451  Ord word 4398  Oncon0 4399  suc csuc 4401  ωcom 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-uni 3841  df-int 3876  df-tr 4133  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628
This theorem is referenced by:  nnaword  6578  ennnfonelemk  12642  ennnfonelemkh  12654
  Copyright terms: Public domain W3C validator