ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucsssuc GIF version

Theorem nnsucsssuc 6601
Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4575, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4593. (Contributed by Jim Kingdon, 25-Aug-2019.)
Assertion
Ref Expression
nnsucsssuc ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))

Proof of Theorem nnsucsssuc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3224 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
2 suceq 4467 . . . . . . 7 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
32sseq1d 3230 . . . . . 6 (𝑥 = 𝐴 → (suc 𝑥 ⊆ suc 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
41, 3imbi12d 234 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵)))
54imbi2d 230 . . . 4 (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵)) ↔ (𝐵 ∈ ω → (𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵))))
6 sseq1 3224 . . . . . 6 (𝑥 = ∅ → (𝑥𝐵 ↔ ∅ ⊆ 𝐵))
7 suceq 4467 . . . . . . 7 (𝑥 = ∅ → suc 𝑥 = suc ∅)
87sseq1d 3230 . . . . . 6 (𝑥 = ∅ → (suc 𝑥 ⊆ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵))
96, 8imbi12d 234 . . . . 5 (𝑥 = ∅ → ((𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (∅ ⊆ 𝐵 → suc ∅ ⊆ suc 𝐵)))
10 sseq1 3224 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
11 suceq 4467 . . . . . . 7 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1211sseq1d 3230 . . . . . 6 (𝑥 = 𝑦 → (suc 𝑥 ⊆ suc 𝐵 ↔ suc 𝑦 ⊆ suc 𝐵))
1310, 12imbi12d 234 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵)))
14 sseq1 3224 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥𝐵 ↔ suc 𝑦𝐵))
15 suceq 4467 . . . . . . 7 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1615sseq1d 3230 . . . . . 6 (𝑥 = suc 𝑦 → (suc 𝑥 ⊆ suc 𝐵 ↔ suc suc 𝑦 ⊆ suc 𝐵))
1714, 16imbi12d 234 . . . . 5 (𝑥 = suc 𝑦 → ((𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵) ↔ (suc 𝑦𝐵 → suc suc 𝑦 ⊆ suc 𝐵)))
18 peano3 4662 . . . . . . . . 9 (𝐵 ∈ ω → suc 𝐵 ≠ ∅)
1918neneqd 2399 . . . . . . . 8 (𝐵 ∈ ω → ¬ suc 𝐵 = ∅)
20 peano2 4661 . . . . . . . . . 10 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
21 0elnn 4685 . . . . . . . . . 10 (suc 𝐵 ∈ ω → (suc 𝐵 = ∅ ∨ ∅ ∈ suc 𝐵))
2220, 21syl 14 . . . . . . . . 9 (𝐵 ∈ ω → (suc 𝐵 = ∅ ∨ ∅ ∈ suc 𝐵))
2322ord 726 . . . . . . . 8 (𝐵 ∈ ω → (¬ suc 𝐵 = ∅ → ∅ ∈ suc 𝐵))
2419, 23mpd 13 . . . . . . 7 (𝐵 ∈ ω → ∅ ∈ suc 𝐵)
25 nnord 4678 . . . . . . . 8 (𝐵 ∈ ω → Ord 𝐵)
26 ordsucim 4566 . . . . . . . 8 (Ord 𝐵 → Ord suc 𝐵)
27 0ex 4187 . . . . . . . . 9 ∅ ∈ V
28 ordelsuc 4571 . . . . . . . . 9 ((∅ ∈ V ∧ Ord suc 𝐵) → (∅ ∈ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵))
2927, 28mpan 424 . . . . . . . 8 (Ord suc 𝐵 → (∅ ∈ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵))
3025, 26, 293syl 17 . . . . . . 7 (𝐵 ∈ ω → (∅ ∈ suc 𝐵 ↔ suc ∅ ⊆ suc 𝐵))
3124, 30mpbid 147 . . . . . 6 (𝐵 ∈ ω → suc ∅ ⊆ suc 𝐵)
3231a1d 22 . . . . 5 (𝐵 ∈ ω → (∅ ⊆ 𝐵 → suc ∅ ⊆ suc 𝐵))
33 simp3 1002 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → suc 𝑦𝐵)
34 simp1l 1024 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → 𝑦 ∈ ω)
35 simp1r 1025 . . . . . . . . . . . 12 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → 𝐵 ∈ ω)
3635, 25syl 14 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → Ord 𝐵)
37 ordelsuc 4571 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ Ord 𝐵) → (𝑦𝐵 ↔ suc 𝑦𝐵))
3834, 36, 37syl2anc 411 . . . . . . . . . 10 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → (𝑦𝐵 ↔ suc 𝑦𝐵))
3933, 38mpbird 167 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → 𝑦𝐵)
40 nnsucelsuc 6600 . . . . . . . . . 10 (𝐵 ∈ ω → (𝑦𝐵 ↔ suc 𝑦 ∈ suc 𝐵))
4135, 40syl 14 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → (𝑦𝐵 ↔ suc 𝑦 ∈ suc 𝐵))
4239, 41mpbid 147 . . . . . . . 8 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → suc 𝑦 ∈ suc 𝐵)
43 peano2 4661 . . . . . . . . . 10 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
4434, 43syl 14 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → suc 𝑦 ∈ ω)
4536, 26syl 14 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → Ord suc 𝐵)
46 ordelsuc 4571 . . . . . . . . 9 ((suc 𝑦 ∈ ω ∧ Ord suc 𝐵) → (suc 𝑦 ∈ suc 𝐵 ↔ suc suc 𝑦 ⊆ suc 𝐵))
4744, 45, 46syl2anc 411 . . . . . . . 8 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → (suc 𝑦 ∈ suc 𝐵 ↔ suc suc 𝑦 ⊆ suc 𝐵))
4842, 47mpbid 147 . . . . . . 7 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) ∧ suc 𝑦𝐵) → suc suc 𝑦 ⊆ suc 𝐵)
49483expia 1208 . . . . . 6 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵)) → (suc 𝑦𝐵 → suc suc 𝑦 ⊆ suc 𝐵))
5049exp31 364 . . . . 5 (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦𝐵 → suc 𝑦 ⊆ suc 𝐵) → (suc 𝑦𝐵 → suc suc 𝑦 ⊆ suc 𝐵))))
519, 13, 17, 32, 50finds2 4667 . . . 4 (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥𝐵 → suc 𝑥 ⊆ suc 𝐵)))
525, 51vtoclga 2844 . . 3 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵)))
5352imp 124 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵))
54 nnon 4676 . . 3 (𝐴 ∈ ω → 𝐴 ∈ On)
55 onsucsssucr 4575 . . 3 ((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵𝐴𝐵))
5654, 25, 55syl2an 289 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ⊆ suc 𝐵𝐴𝐵))
5753, 56impbid 129 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2178  Vcvv 2776  wss 3174  c0 3468  Ord word 4427  Oncon0 4428  suc csuc 4430  ωcom 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-tr 4159  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657
This theorem is referenced by:  nnaword  6620  ennnfonelemk  12886  ennnfonelemkh  12898
  Copyright terms: Public domain W3C validator