ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgsoddprmlem3 GIF version

Theorem 2lgsoddprmlem3 15506
Description: Lemma 3 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))

Proof of Theorem 2lgsoddprmlem3
StepHypRef Expression
1 lgsdir2lem3 15425 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}))
2 eleq1 2267 . . . . 5 ((𝑁 mod 8) = 𝑅 → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ 𝑅 ∈ ({1, 7} ∪ {3, 5})))
32eqcoms 2207 . . . 4 (𝑅 = (𝑁 mod 8) → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ 𝑅 ∈ ({1, 7} ∪ {3, 5})))
4 elun 3313 . . . . . 6 (𝑅 ∈ ({1, 7} ∪ {3, 5}) ↔ (𝑅 ∈ {1, 7} ∨ 𝑅 ∈ {3, 5}))
5 elpri 3655 . . . . . . . 8 (𝑅 ∈ {3, 5} → (𝑅 = 3 ∨ 𝑅 = 5))
6 oveq1 5941 . . . . . . . . . . . . . 14 (𝑅 = 3 → (𝑅↑2) = (3↑2))
76oveq1d 5949 . . . . . . . . . . . . 13 (𝑅 = 3 → ((𝑅↑2) − 1) = ((3↑2) − 1))
87oveq1d 5949 . . . . . . . . . . . 12 (𝑅 = 3 → (((𝑅↑2) − 1) / 8) = (((3↑2) − 1) / 8))
9 2lgsoddprmlem3b 15503 . . . . . . . . . . . 12 (((3↑2) − 1) / 8) = 1
108, 9eqtrdi 2253 . . . . . . . . . . 11 (𝑅 = 3 → (((𝑅↑2) − 1) / 8) = 1)
1110breq2d 4055 . . . . . . . . . 10 (𝑅 = 3 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ 1))
12 n2dvds1 12142 . . . . . . . . . . 11 ¬ 2 ∥ 1
1312pm2.21i 647 . . . . . . . . . 10 (2 ∥ 1 → 𝑅 ∈ {1, 7})
1411, 13biimtrdi 163 . . . . . . . . 9 (𝑅 = 3 → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
15 oveq1 5941 . . . . . . . . . . . . . 14 (𝑅 = 5 → (𝑅↑2) = (5↑2))
1615oveq1d 5949 . . . . . . . . . . . . 13 (𝑅 = 5 → ((𝑅↑2) − 1) = ((5↑2) − 1))
1716oveq1d 5949 . . . . . . . . . . . 12 (𝑅 = 5 → (((𝑅↑2) − 1) / 8) = (((5↑2) − 1) / 8))
1817breq2d 4055 . . . . . . . . . . 11 (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ (((5↑2) − 1) / 8)))
19 2lgsoddprmlem3c 15504 . . . . . . . . . . . 12 (((5↑2) − 1) / 8) = 3
2019breq2i 4051 . . . . . . . . . . 11 (2 ∥ (((5↑2) − 1) / 8) ↔ 2 ∥ 3)
2118, 20bitrdi 196 . . . . . . . . . 10 (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ 3))
22 n2dvds3 12145 . . . . . . . . . . 11 ¬ 2 ∥ 3
2322pm2.21i 647 . . . . . . . . . 10 (2 ∥ 3 → 𝑅 ∈ {1, 7})
2421, 23biimtrdi 163 . . . . . . . . 9 (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
2514, 24jaoi 717 . . . . . . . 8 ((𝑅 = 3 ∨ 𝑅 = 5) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
265, 25syl 14 . . . . . . 7 (𝑅 ∈ {3, 5} → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
2726jao1i 797 . . . . . 6 ((𝑅 ∈ {1, 7} ∨ 𝑅 ∈ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
284, 27sylbi 121 . . . . 5 (𝑅 ∈ ({1, 7} ∪ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
29 elpri 3655 . . . . . 6 (𝑅 ∈ {1, 7} → (𝑅 = 1 ∨ 𝑅 = 7))
30 z0even 12141 . . . . . . . 8 2 ∥ 0
31 oveq1 5941 . . . . . . . . . . 11 (𝑅 = 1 → (𝑅↑2) = (1↑2))
3231oveq1d 5949 . . . . . . . . . 10 (𝑅 = 1 → ((𝑅↑2) − 1) = ((1↑2) − 1))
3332oveq1d 5949 . . . . . . . . 9 (𝑅 = 1 → (((𝑅↑2) − 1) / 8) = (((1↑2) − 1) / 8))
34 2lgsoddprmlem3a 15502 . . . . . . . . 9 (((1↑2) − 1) / 8) = 0
3533, 34eqtrdi 2253 . . . . . . . 8 (𝑅 = 1 → (((𝑅↑2) − 1) / 8) = 0)
3630, 35breqtrrid 4081 . . . . . . 7 (𝑅 = 1 → 2 ∥ (((𝑅↑2) − 1) / 8))
37 2z 9382 . . . . . . . . 9 2 ∈ ℤ
38 3z 9383 . . . . . . . . 9 3 ∈ ℤ
39 dvdsmul1 12043 . . . . . . . . 9 ((2 ∈ ℤ ∧ 3 ∈ ℤ) → 2 ∥ (2 · 3))
4037, 38, 39mp2an 426 . . . . . . . 8 2 ∥ (2 · 3)
41 oveq1 5941 . . . . . . . . . . 11 (𝑅 = 7 → (𝑅↑2) = (7↑2))
4241oveq1d 5949 . . . . . . . . . 10 (𝑅 = 7 → ((𝑅↑2) − 1) = ((7↑2) − 1))
4342oveq1d 5949 . . . . . . . . 9 (𝑅 = 7 → (((𝑅↑2) − 1) / 8) = (((7↑2) − 1) / 8))
44 2lgsoddprmlem3d 15505 . . . . . . . . 9 (((7↑2) − 1) / 8) = (2 · 3)
4543, 44eqtrdi 2253 . . . . . . . 8 (𝑅 = 7 → (((𝑅↑2) − 1) / 8) = (2 · 3))
4640, 45breqtrrid 4081 . . . . . . 7 (𝑅 = 7 → 2 ∥ (((𝑅↑2) − 1) / 8))
4736, 46jaoi 717 . . . . . 6 ((𝑅 = 1 ∨ 𝑅 = 7) → 2 ∥ (((𝑅↑2) − 1) / 8))
4829, 47syl 14 . . . . 5 (𝑅 ∈ {1, 7} → 2 ∥ (((𝑅↑2) − 1) / 8))
4928, 48impbid1 142 . . . 4 (𝑅 ∈ ({1, 7} ∪ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))
503, 49biimtrdi 163 . . 3 (𝑅 = (𝑁 mod 8) → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7})))
511, 50syl5com 29 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑅 = (𝑁 mod 8) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7})))
52513impia 1202 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1372  wcel 2175  cun 3163  {cpr 3633   class class class wbr 4043  (class class class)co 5934  0cc0 7907  1c1 7908   · cmul 7912  cmin 8225   / cdiv 8727  2c2 9069  3c3 9070  5c5 9072  7c7 9074  8c8 9075  cz 9354   mod cmo 10448  cexp 10664  cdvds 12017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-xor 1395  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-7 9082  df-8 9083  df-9 9084  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-fz 10113  df-fl 10394  df-mod 10449  df-seqfrec 10574  df-exp 10665  df-dvds 12018
This theorem is referenced by:  2lgsoddprmlem4  15507
  Copyright terms: Public domain W3C validator