ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgsoddprmlem3 GIF version

Theorem 2lgsoddprmlem3 15784
Description: Lemma 3 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))

Proof of Theorem 2lgsoddprmlem3
StepHypRef Expression
1 lgsdir2lem3 15703 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}))
2 eleq1 2292 . . . . 5 ((𝑁 mod 8) = 𝑅 → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ 𝑅 ∈ ({1, 7} ∪ {3, 5})))
32eqcoms 2232 . . . 4 (𝑅 = (𝑁 mod 8) → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ 𝑅 ∈ ({1, 7} ∪ {3, 5})))
4 elun 3345 . . . . . 6 (𝑅 ∈ ({1, 7} ∪ {3, 5}) ↔ (𝑅 ∈ {1, 7} ∨ 𝑅 ∈ {3, 5}))
5 elpri 3689 . . . . . . . 8 (𝑅 ∈ {3, 5} → (𝑅 = 3 ∨ 𝑅 = 5))
6 oveq1 6007 . . . . . . . . . . . . . 14 (𝑅 = 3 → (𝑅↑2) = (3↑2))
76oveq1d 6015 . . . . . . . . . . . . 13 (𝑅 = 3 → ((𝑅↑2) − 1) = ((3↑2) − 1))
87oveq1d 6015 . . . . . . . . . . . 12 (𝑅 = 3 → (((𝑅↑2) − 1) / 8) = (((3↑2) − 1) / 8))
9 2lgsoddprmlem3b 15781 . . . . . . . . . . . 12 (((3↑2) − 1) / 8) = 1
108, 9eqtrdi 2278 . . . . . . . . . . 11 (𝑅 = 3 → (((𝑅↑2) − 1) / 8) = 1)
1110breq2d 4094 . . . . . . . . . 10 (𝑅 = 3 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ 1))
12 n2dvds1 12418 . . . . . . . . . . 11 ¬ 2 ∥ 1
1312pm2.21i 649 . . . . . . . . . 10 (2 ∥ 1 → 𝑅 ∈ {1, 7})
1411, 13biimtrdi 163 . . . . . . . . 9 (𝑅 = 3 → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
15 oveq1 6007 . . . . . . . . . . . . . 14 (𝑅 = 5 → (𝑅↑2) = (5↑2))
1615oveq1d 6015 . . . . . . . . . . . . 13 (𝑅 = 5 → ((𝑅↑2) − 1) = ((5↑2) − 1))
1716oveq1d 6015 . . . . . . . . . . . 12 (𝑅 = 5 → (((𝑅↑2) − 1) / 8) = (((5↑2) − 1) / 8))
1817breq2d 4094 . . . . . . . . . . 11 (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ (((5↑2) − 1) / 8)))
19 2lgsoddprmlem3c 15782 . . . . . . . . . . . 12 (((5↑2) − 1) / 8) = 3
2019breq2i 4090 . . . . . . . . . . 11 (2 ∥ (((5↑2) − 1) / 8) ↔ 2 ∥ 3)
2118, 20bitrdi 196 . . . . . . . . . 10 (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ 3))
22 n2dvds3 12421 . . . . . . . . . . 11 ¬ 2 ∥ 3
2322pm2.21i 649 . . . . . . . . . 10 (2 ∥ 3 → 𝑅 ∈ {1, 7})
2421, 23biimtrdi 163 . . . . . . . . 9 (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
2514, 24jaoi 721 . . . . . . . 8 ((𝑅 = 3 ∨ 𝑅 = 5) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
265, 25syl 14 . . . . . . 7 (𝑅 ∈ {3, 5} → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
2726jao1i 801 . . . . . 6 ((𝑅 ∈ {1, 7} ∨ 𝑅 ∈ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
284, 27sylbi 121 . . . . 5 (𝑅 ∈ ({1, 7} ∪ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
29 elpri 3689 . . . . . 6 (𝑅 ∈ {1, 7} → (𝑅 = 1 ∨ 𝑅 = 7))
30 z0even 12417 . . . . . . . 8 2 ∥ 0
31 oveq1 6007 . . . . . . . . . . 11 (𝑅 = 1 → (𝑅↑2) = (1↑2))
3231oveq1d 6015 . . . . . . . . . 10 (𝑅 = 1 → ((𝑅↑2) − 1) = ((1↑2) − 1))
3332oveq1d 6015 . . . . . . . . 9 (𝑅 = 1 → (((𝑅↑2) − 1) / 8) = (((1↑2) − 1) / 8))
34 2lgsoddprmlem3a 15780 . . . . . . . . 9 (((1↑2) − 1) / 8) = 0
3533, 34eqtrdi 2278 . . . . . . . 8 (𝑅 = 1 → (((𝑅↑2) − 1) / 8) = 0)
3630, 35breqtrrid 4120 . . . . . . 7 (𝑅 = 1 → 2 ∥ (((𝑅↑2) − 1) / 8))
37 2z 9470 . . . . . . . . 9 2 ∈ ℤ
38 3z 9471 . . . . . . . . 9 3 ∈ ℤ
39 dvdsmul1 12319 . . . . . . . . 9 ((2 ∈ ℤ ∧ 3 ∈ ℤ) → 2 ∥ (2 · 3))
4037, 38, 39mp2an 426 . . . . . . . 8 2 ∥ (2 · 3)
41 oveq1 6007 . . . . . . . . . . 11 (𝑅 = 7 → (𝑅↑2) = (7↑2))
4241oveq1d 6015 . . . . . . . . . 10 (𝑅 = 7 → ((𝑅↑2) − 1) = ((7↑2) − 1))
4342oveq1d 6015 . . . . . . . . 9 (𝑅 = 7 → (((𝑅↑2) − 1) / 8) = (((7↑2) − 1) / 8))
44 2lgsoddprmlem3d 15783 . . . . . . . . 9 (((7↑2) − 1) / 8) = (2 · 3)
4543, 44eqtrdi 2278 . . . . . . . 8 (𝑅 = 7 → (((𝑅↑2) − 1) / 8) = (2 · 3))
4640, 45breqtrrid 4120 . . . . . . 7 (𝑅 = 7 → 2 ∥ (((𝑅↑2) − 1) / 8))
4736, 46jaoi 721 . . . . . 6 ((𝑅 = 1 ∨ 𝑅 = 7) → 2 ∥ (((𝑅↑2) − 1) / 8))
4829, 47syl 14 . . . . 5 (𝑅 ∈ {1, 7} → 2 ∥ (((𝑅↑2) − 1) / 8))
4928, 48impbid1 142 . . . 4 (𝑅 ∈ ({1, 7} ∪ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))
503, 49biimtrdi 163 . . 3 (𝑅 = (𝑁 mod 8) → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7})))
511, 50syl5com 29 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑅 = (𝑁 mod 8) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7})))
52513impia 1224 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200  cun 3195  {cpr 3667   class class class wbr 4082  (class class class)co 6000  0cc0 7995  1c1 7996   · cmul 8000  cmin 8313   / cdiv 8815  2c2 9157  3c3 9158  5c5 9160  7c7 9162  8c8 9163  cz 9442   mod cmo 10539  cexp 10755  cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-dvds 12294
This theorem is referenced by:  2lgsoddprmlem4  15785
  Copyright terms: Public domain W3C validator