ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnnn0b GIF version

Theorem elnnnn0b 8650
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.)
Assertion
Ref Expression
elnnnn0b (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))

Proof of Theorem elnnnn0b
StepHypRef Expression
1 nnnn0 8613 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 nngt0 8382 . . 3 (𝑁 ∈ ℕ → 0 < 𝑁)
31, 2jca 300 . 2 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
4 elnn0 8608 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
5 ax-1 5 . . . . 5 (𝑁 ∈ ℕ → (0 < 𝑁𝑁 ∈ ℕ))
6 breq2 3824 . . . . . 6 (𝑁 = 0 → (0 < 𝑁 ↔ 0 < 0))
7 0re 7432 . . . . . . . 8 0 ∈ ℝ
87ltnri 7521 . . . . . . 7 ¬ 0 < 0
98pm2.21i 608 . . . . . 6 (0 < 0 → 𝑁 ∈ ℕ)
106, 9syl6bi 161 . . . . 5 (𝑁 = 0 → (0 < 𝑁𝑁 ∈ ℕ))
115, 10jaoi 669 . . . 4 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁𝑁 ∈ ℕ))
124, 11sylbi 119 . . 3 (𝑁 ∈ ℕ0 → (0 < 𝑁𝑁 ∈ ℕ))
1312imp 122 . 2 ((𝑁 ∈ ℕ0 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
143, 13impbii 124 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 662   = wceq 1287  wcel 1436   class class class wbr 3820  0cc0 7294   < clt 7466  cn 8357  0cn0 8606
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-i2m1 7394  ax-0lt1 7395  ax-0id 7397  ax-rnegex 7398  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-ltadd 7405
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2617  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-br 3821  df-opab 3875  df-xp 4417  df-cnv 4419  df-iota 4946  df-fv 4989  df-ov 5616  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-inn 8358  df-n0 8607
This theorem is referenced by:  elnnnn0c  8651  bccl2  10072  bezoutlemmain  10862
  Copyright terms: Public domain W3C validator