![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnnnn0b | GIF version |
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.) |
Ref | Expression |
---|---|
elnnnn0b | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 8778 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
2 | nngt0 8545 | . . 3 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
3 | 1, 2 | jca 301 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) |
4 | elnn0 8773 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
5 | ax-1 5 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0 < 𝑁 → 𝑁 ∈ ℕ)) | |
6 | breq2 3871 | . . . . . 6 ⊢ (𝑁 = 0 → (0 < 𝑁 ↔ 0 < 0)) | |
7 | 0re 7585 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
8 | 7 | ltnri 7674 | . . . . . . 7 ⊢ ¬ 0 < 0 |
9 | 8 | pm2.21i 613 | . . . . . 6 ⊢ (0 < 0 → 𝑁 ∈ ℕ) |
10 | 6, 9 | syl6bi 162 | . . . . 5 ⊢ (𝑁 = 0 → (0 < 𝑁 → 𝑁 ∈ ℕ)) |
11 | 5, 10 | jaoi 674 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 → 𝑁 ∈ ℕ)) |
12 | 4, 11 | sylbi 120 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 → 𝑁 ∈ ℕ)) |
13 | 12 | imp 123 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ) |
14 | 3, 13 | impbii 125 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 667 = wceq 1296 ∈ wcel 1445 class class class wbr 3867 0cc0 7447 < clt 7619 ℕcn 8520 ℕ0cn0 8771 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-i2m1 7547 ax-0lt1 7548 ax-0id 7550 ax-rnegex 7551 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-xp 4473 df-cnv 4475 df-iota 5014 df-fv 5057 df-ov 5693 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-inn 8521 df-n0 8772 |
This theorem is referenced by: elnnnn0c 8816 bccl2 10307 bezoutlemmain 11430 |
Copyright terms: Public domain | W3C validator |