![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnnnn0b | GIF version |
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.) |
Ref | Expression |
---|---|
elnnnn0b | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 9250 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
2 | nngt0 9009 | . . 3 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) |
4 | elnn0 9245 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
5 | ax-1 6 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0 < 𝑁 → 𝑁 ∈ ℕ)) | |
6 | breq2 4034 | . . . . . 6 ⊢ (𝑁 = 0 → (0 < 𝑁 ↔ 0 < 0)) | |
7 | 0re 8021 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
8 | 7 | ltnri 8114 | . . . . . . 7 ⊢ ¬ 0 < 0 |
9 | 8 | pm2.21i 647 | . . . . . 6 ⊢ (0 < 0 → 𝑁 ∈ ℕ) |
10 | 6, 9 | biimtrdi 163 | . . . . 5 ⊢ (𝑁 = 0 → (0 < 𝑁 → 𝑁 ∈ ℕ)) |
11 | 5, 10 | jaoi 717 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 → 𝑁 ∈ ℕ)) |
12 | 4, 11 | sylbi 121 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 → 𝑁 ∈ ℕ)) |
13 | 12 | imp 124 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ) |
14 | 3, 13 | impbii 126 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 0cc0 7874 < clt 8056 ℕcn 8984 ℕ0cn0 9243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-iota 5216 df-fv 5263 df-ov 5922 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-inn 8985 df-n0 9244 |
This theorem is referenced by: elnnnn0c 9288 bccl2 10842 bezoutlemmain 12138 |
Copyright terms: Public domain | W3C validator |