Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnnnn0b | GIF version |
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.) |
Ref | Expression |
---|---|
elnnnn0b | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 9076 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
2 | nngt0 8837 | . . 3 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
3 | 1, 2 | jca 304 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) |
4 | elnn0 9071 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
5 | ax-1 6 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0 < 𝑁 → 𝑁 ∈ ℕ)) | |
6 | breq2 3965 | . . . . . 6 ⊢ (𝑁 = 0 → (0 < 𝑁 ↔ 0 < 0)) | |
7 | 0re 7857 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
8 | 7 | ltnri 7948 | . . . . . . 7 ⊢ ¬ 0 < 0 |
9 | 8 | pm2.21i 636 | . . . . . 6 ⊢ (0 < 0 → 𝑁 ∈ ℕ) |
10 | 6, 9 | syl6bi 162 | . . . . 5 ⊢ (𝑁 = 0 → (0 < 𝑁 → 𝑁 ∈ ℕ)) |
11 | 5, 10 | jaoi 706 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 → 𝑁 ∈ ℕ)) |
12 | 4, 11 | sylbi 120 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 → 𝑁 ∈ ℕ)) |
13 | 12 | imp 123 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ) |
14 | 3, 13 | impbii 125 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1332 ∈ wcel 2125 class class class wbr 3961 0cc0 7711 < clt 7891 ℕcn 8812 ℕ0cn0 9069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-xp 4585 df-cnv 4587 df-iota 5128 df-fv 5171 df-ov 5817 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-inn 8813 df-n0 9070 |
This theorem is referenced by: elnnnn0c 9114 bccl2 10619 bezoutlemmain 11854 |
Copyright terms: Public domain | W3C validator |