ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnnn0b GIF version

Theorem elnnnn0b 9287
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.)
Assertion
Ref Expression
elnnnn0b (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))

Proof of Theorem elnnnn0b
StepHypRef Expression
1 nnnn0 9250 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 nngt0 9009 . . 3 (𝑁 ∈ ℕ → 0 < 𝑁)
31, 2jca 306 . 2 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
4 elnn0 9245 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
5 ax-1 6 . . . . 5 (𝑁 ∈ ℕ → (0 < 𝑁𝑁 ∈ ℕ))
6 breq2 4034 . . . . . 6 (𝑁 = 0 → (0 < 𝑁 ↔ 0 < 0))
7 0re 8021 . . . . . . . 8 0 ∈ ℝ
87ltnri 8114 . . . . . . 7 ¬ 0 < 0
98pm2.21i 647 . . . . . 6 (0 < 0 → 𝑁 ∈ ℕ)
106, 9biimtrdi 163 . . . . 5 (𝑁 = 0 → (0 < 𝑁𝑁 ∈ ℕ))
115, 10jaoi 717 . . . 4 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁𝑁 ∈ ℕ))
124, 11sylbi 121 . . 3 (𝑁 ∈ ℕ0 → (0 < 𝑁𝑁 ∈ ℕ))
1312imp 124 . 2 ((𝑁 ∈ ℕ0 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
143, 13impbii 126 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164   class class class wbr 4030  0cc0 7874   < clt 8056  cn 8984  0cn0 9243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-iota 5216  df-fv 5263  df-ov 5922  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-inn 8985  df-n0 9244
This theorem is referenced by:  elnnnn0c  9288  bccl2  10842  bezoutlemmain  12138
  Copyright terms: Public domain W3C validator