ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnnn0b GIF version

Theorem elnnnn0b 9113
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.)
Assertion
Ref Expression
elnnnn0b (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))

Proof of Theorem elnnnn0b
StepHypRef Expression
1 nnnn0 9076 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 nngt0 8837 . . 3 (𝑁 ∈ ℕ → 0 < 𝑁)
31, 2jca 304 . 2 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
4 elnn0 9071 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
5 ax-1 6 . . . . 5 (𝑁 ∈ ℕ → (0 < 𝑁𝑁 ∈ ℕ))
6 breq2 3965 . . . . . 6 (𝑁 = 0 → (0 < 𝑁 ↔ 0 < 0))
7 0re 7857 . . . . . . . 8 0 ∈ ℝ
87ltnri 7948 . . . . . . 7 ¬ 0 < 0
98pm2.21i 636 . . . . . 6 (0 < 0 → 𝑁 ∈ ℕ)
106, 9syl6bi 162 . . . . 5 (𝑁 = 0 → (0 < 𝑁𝑁 ∈ ℕ))
115, 10jaoi 706 . . . 4 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁𝑁 ∈ ℕ))
124, 11sylbi 120 . . 3 (𝑁 ∈ ℕ0 → (0 < 𝑁𝑁 ∈ ℕ))
1312imp 123 . 2 ((𝑁 ∈ ℕ0 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
143, 13impbii 125 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1332  wcel 2125   class class class wbr 3961  0cc0 7711   < clt 7891  cn 8812  0cn0 9069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-i2m1 7816  ax-0lt1 7817  ax-0id 7819  ax-rnegex 7820  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-ltadd 7827
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-br 3962  df-opab 4022  df-xp 4585  df-cnv 4587  df-iota 5128  df-fv 5171  df-ov 5817  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-inn 8813  df-n0 9070
This theorem is referenced by:  elnnnn0c  9114  bccl2  10619  bezoutlemmain  11854
  Copyright terms: Public domain W3C validator