ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnnn0b GIF version

Theorem elnnnn0b 9409
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.)
Assertion
Ref Expression
elnnnn0b (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))

Proof of Theorem elnnnn0b
StepHypRef Expression
1 nnnn0 9372 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 nngt0 9131 . . 3 (𝑁 ∈ ℕ → 0 < 𝑁)
31, 2jca 306 . 2 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
4 elnn0 9367 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
5 ax-1 6 . . . . 5 (𝑁 ∈ ℕ → (0 < 𝑁𝑁 ∈ ℕ))
6 breq2 4086 . . . . . 6 (𝑁 = 0 → (0 < 𝑁 ↔ 0 < 0))
7 0re 8142 . . . . . . . 8 0 ∈ ℝ
87ltnri 8235 . . . . . . 7 ¬ 0 < 0
98pm2.21i 649 . . . . . 6 (0 < 0 → 𝑁 ∈ ℕ)
106, 9biimtrdi 163 . . . . 5 (𝑁 = 0 → (0 < 𝑁𝑁 ∈ ℕ))
115, 10jaoi 721 . . . 4 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁𝑁 ∈ ℕ))
124, 11sylbi 121 . . 3 (𝑁 ∈ ℕ0 → (0 < 𝑁𝑁 ∈ ℕ))
1312imp 124 . 2 ((𝑁 ∈ ℕ0 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
143, 13impbii 126 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200   class class class wbr 4082  0cc0 7995   < clt 8177  cn 9106  0cn0 9365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-iota 5277  df-fv 5325  df-ov 6003  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-inn 9107  df-n0 9366
This theorem is referenced by:  elnnnn0c  9410  bccl2  10985  ccatfv0  11133  swrdswrd  11232  bezoutlemmain  12514
  Copyright terms: Public domain W3C validator