| Step | Hyp | Ref
| Expression |
| 1 | | eleq2 2260 |
. . . 4
⊢ (𝑥 = ∅ → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ∅)) |
| 2 | | suceq 4437 |
. . . . 5
⊢ (𝑥 = ∅ → suc 𝑥 = suc ∅) |
| 3 | 2 | eleq2d 2266 |
. . . 4
⊢ (𝑥 = ∅ → (suc 𝐴 ∈ suc 𝑥 ↔ suc 𝐴 ∈ suc ∅)) |
| 4 | 1, 3 | imbi12d 234 |
. . 3
⊢ (𝑥 = ∅ → ((𝐴 ∈ 𝑥 → suc 𝐴 ∈ suc 𝑥) ↔ (𝐴 ∈ ∅ → suc 𝐴 ∈ suc ∅))) |
| 5 | | eleq2 2260 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
| 6 | | suceq 4437 |
. . . . 5
⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) |
| 7 | 6 | eleq2d 2266 |
. . . 4
⊢ (𝑥 = 𝑦 → (suc 𝐴 ∈ suc 𝑥 ↔ suc 𝐴 ∈ suc 𝑦)) |
| 8 | 5, 7 | imbi12d 234 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐴 ∈ 𝑥 → suc 𝐴 ∈ suc 𝑥) ↔ (𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦))) |
| 9 | | eleq2 2260 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ suc 𝑦)) |
| 10 | | suceq 4437 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦) |
| 11 | 10 | eleq2d 2266 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (suc 𝐴 ∈ suc 𝑥 ↔ suc 𝐴 ∈ suc suc 𝑦)) |
| 12 | 9, 11 | imbi12d 234 |
. . 3
⊢ (𝑥 = suc 𝑦 → ((𝐴 ∈ 𝑥 → suc 𝐴 ∈ suc 𝑥) ↔ (𝐴 ∈ suc 𝑦 → suc 𝐴 ∈ suc suc 𝑦))) |
| 13 | | eleq2 2260 |
. . . 4
⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) |
| 14 | | suceq 4437 |
. . . . 5
⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) |
| 15 | 14 | eleq2d 2266 |
. . . 4
⊢ (𝑥 = 𝐵 → (suc 𝐴 ∈ suc 𝑥 ↔ suc 𝐴 ∈ suc 𝐵)) |
| 16 | 13, 15 | imbi12d 234 |
. . 3
⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 → suc 𝐴 ∈ suc 𝑥) ↔ (𝐴 ∈ 𝐵 → suc 𝐴 ∈ suc 𝐵))) |
| 17 | | noel 3454 |
. . . 4
⊢ ¬
𝐴 ∈
∅ |
| 18 | 17 | pm2.21i 647 |
. . 3
⊢ (𝐴 ∈ ∅ → suc 𝐴 ∈ suc
∅) |
| 19 | | elsuci 4438 |
. . . . . . . 8
⊢ (𝐴 ∈ suc 𝑦 → (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦)) |
| 20 | 19 | adantl 277 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦)) |
| 21 | | simpl 109 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → (𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦)) |
| 22 | | suceq 4437 |
. . . . . . . . 9
⊢ (𝐴 = 𝑦 → suc 𝐴 = suc 𝑦) |
| 23 | 22 | a1i 9 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → (𝐴 = 𝑦 → suc 𝐴 = suc 𝑦)) |
| 24 | 21, 23 | orim12d 787 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → (suc 𝐴 ∈ suc 𝑦 ∨ suc 𝐴 = suc 𝑦))) |
| 25 | 20, 24 | mpd 13 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → (suc 𝐴 ∈ suc 𝑦 ∨ suc 𝐴 = suc 𝑦)) |
| 26 | | vex 2766 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 27 | 26 | sucex 4535 |
. . . . . . 7
⊢ suc 𝑦 ∈ V |
| 28 | 27 | elsuc2 4442 |
. . . . . 6
⊢ (suc
𝐴 ∈ suc suc 𝑦 ↔ (suc 𝐴 ∈ suc 𝑦 ∨ suc 𝐴 = suc 𝑦)) |
| 29 | 25, 28 | sylibr 134 |
. . . . 5
⊢ (((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → suc 𝐴 ∈ suc suc 𝑦) |
| 30 | 29 | ex 115 |
. . . 4
⊢ ((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) → (𝐴 ∈ suc 𝑦 → suc 𝐴 ∈ suc suc 𝑦)) |
| 31 | 30 | a1i 9 |
. . 3
⊢ (𝑦 ∈ ω → ((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) → (𝐴 ∈ suc 𝑦 → suc 𝐴 ∈ suc suc 𝑦))) |
| 32 | 4, 8, 12, 16, 18, 31 | finds 4636 |
. 2
⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 → suc 𝐴 ∈ suc 𝐵)) |
| 33 | | nnon 4646 |
. . 3
⊢ (𝐵 ∈ ω → 𝐵 ∈ On) |
| 34 | | onsucelsucr 4544 |
. . 3
⊢ (𝐵 ∈ On → (suc 𝐴 ∈ suc 𝐵 → 𝐴 ∈ 𝐵)) |
| 35 | 33, 34 | syl 14 |
. 2
⊢ (𝐵 ∈ ω → (suc
𝐴 ∈ suc 𝐵 → 𝐴 ∈ 𝐵)) |
| 36 | 32, 35 | impbid 129 |
1
⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵)) |