ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucelsuc GIF version

Theorem nnsucelsuc 6577
Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucelsucr 4556, but the forward direction, for all ordinals, implies excluded middle as seen as onsucelsucexmid 4578. (Contributed by Jim Kingdon, 25-Aug-2019.)
Assertion
Ref Expression
nnsucelsuc (𝐵 ∈ ω → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))

Proof of Theorem nnsucelsuc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2269 . . . 4 (𝑥 = ∅ → (𝐴𝑥𝐴 ∈ ∅))
2 suceq 4449 . . . . 5 (𝑥 = ∅ → suc 𝑥 = suc ∅)
32eleq2d 2275 . . . 4 (𝑥 = ∅ → (suc 𝐴 ∈ suc 𝑥 ↔ suc 𝐴 ∈ suc ∅))
41, 3imbi12d 234 . . 3 (𝑥 = ∅ → ((𝐴𝑥 → suc 𝐴 ∈ suc 𝑥) ↔ (𝐴 ∈ ∅ → suc 𝐴 ∈ suc ∅)))
5 eleq2 2269 . . . 4 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
6 suceq 4449 . . . . 5 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
76eleq2d 2275 . . . 4 (𝑥 = 𝑦 → (suc 𝐴 ∈ suc 𝑥 ↔ suc 𝐴 ∈ suc 𝑦))
85, 7imbi12d 234 . . 3 (𝑥 = 𝑦 → ((𝐴𝑥 → suc 𝐴 ∈ suc 𝑥) ↔ (𝐴𝑦 → suc 𝐴 ∈ suc 𝑦)))
9 eleq2 2269 . . . 4 (𝑥 = suc 𝑦 → (𝐴𝑥𝐴 ∈ suc 𝑦))
10 suceq 4449 . . . . 5 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1110eleq2d 2275 . . . 4 (𝑥 = suc 𝑦 → (suc 𝐴 ∈ suc 𝑥 ↔ suc 𝐴 ∈ suc suc 𝑦))
129, 11imbi12d 234 . . 3 (𝑥 = suc 𝑦 → ((𝐴𝑥 → suc 𝐴 ∈ suc 𝑥) ↔ (𝐴 ∈ suc 𝑦 → suc 𝐴 ∈ suc suc 𝑦)))
13 eleq2 2269 . . . 4 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
14 suceq 4449 . . . . 5 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
1514eleq2d 2275 . . . 4 (𝑥 = 𝐵 → (suc 𝐴 ∈ suc 𝑥 ↔ suc 𝐴 ∈ suc 𝐵))
1613, 15imbi12d 234 . . 3 (𝑥 = 𝐵 → ((𝐴𝑥 → suc 𝐴 ∈ suc 𝑥) ↔ (𝐴𝐵 → suc 𝐴 ∈ suc 𝐵)))
17 noel 3464 . . . 4 ¬ 𝐴 ∈ ∅
1817pm2.21i 647 . . 3 (𝐴 ∈ ∅ → suc 𝐴 ∈ suc ∅)
19 elsuci 4450 . . . . . . . 8 (𝐴 ∈ suc 𝑦 → (𝐴𝑦𝐴 = 𝑦))
2019adantl 277 . . . . . . 7 (((𝐴𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → (𝐴𝑦𝐴 = 𝑦))
21 simpl 109 . . . . . . . 8 (((𝐴𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → (𝐴𝑦 → suc 𝐴 ∈ suc 𝑦))
22 suceq 4449 . . . . . . . . 9 (𝐴 = 𝑦 → suc 𝐴 = suc 𝑦)
2322a1i 9 . . . . . . . 8 (((𝐴𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → (𝐴 = 𝑦 → suc 𝐴 = suc 𝑦))
2421, 23orim12d 788 . . . . . . 7 (((𝐴𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → ((𝐴𝑦𝐴 = 𝑦) → (suc 𝐴 ∈ suc 𝑦 ∨ suc 𝐴 = suc 𝑦)))
2520, 24mpd 13 . . . . . 6 (((𝐴𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → (suc 𝐴 ∈ suc 𝑦 ∨ suc 𝐴 = suc 𝑦))
26 vex 2775 . . . . . . . 8 𝑦 ∈ V
2726sucex 4547 . . . . . . 7 suc 𝑦 ∈ V
2827elsuc2 4454 . . . . . 6 (suc 𝐴 ∈ suc suc 𝑦 ↔ (suc 𝐴 ∈ suc 𝑦 ∨ suc 𝐴 = suc 𝑦))
2925, 28sylibr 134 . . . . 5 (((𝐴𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → suc 𝐴 ∈ suc suc 𝑦)
3029ex 115 . . . 4 ((𝐴𝑦 → suc 𝐴 ∈ suc 𝑦) → (𝐴 ∈ suc 𝑦 → suc 𝐴 ∈ suc suc 𝑦))
3130a1i 9 . . 3 (𝑦 ∈ ω → ((𝐴𝑦 → suc 𝐴 ∈ suc 𝑦) → (𝐴 ∈ suc 𝑦 → suc 𝐴 ∈ suc suc 𝑦)))
324, 8, 12, 16, 18, 31finds 4648 . 2 (𝐵 ∈ ω → (𝐴𝐵 → suc 𝐴 ∈ suc 𝐵))
33 nnon 4658 . . 3 (𝐵 ∈ ω → 𝐵 ∈ On)
34 onsucelsucr 4556 . . 3 (𝐵 ∈ On → (suc 𝐴 ∈ suc 𝐵𝐴𝐵))
3533, 34syl 14 . 2 (𝐵 ∈ ω → (suc 𝐴 ∈ suc 𝐵𝐴𝐵))
3632, 35impbid 129 1 (𝐵 ∈ ω → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2176  c0 3460  Oncon0 4410  suc csuc 4412  ωcom 4638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-tr 4143  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639
This theorem is referenced by:  nnsucsssuc  6578  nntri3or  6579  nnsucuniel  6581  nnaordi  6594  ennnfonelemhom  12786
  Copyright terms: Public domain W3C validator