Step | Hyp | Ref
| Expression |
1 | | eleq2 2230 |
. . . 4
⊢ (𝑥 = ∅ → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ∅)) |
2 | | suceq 4380 |
. . . . 5
⊢ (𝑥 = ∅ → suc 𝑥 = suc ∅) |
3 | 2 | eleq2d 2236 |
. . . 4
⊢ (𝑥 = ∅ → (suc 𝐴 ∈ suc 𝑥 ↔ suc 𝐴 ∈ suc ∅)) |
4 | 1, 3 | imbi12d 233 |
. . 3
⊢ (𝑥 = ∅ → ((𝐴 ∈ 𝑥 → suc 𝐴 ∈ suc 𝑥) ↔ (𝐴 ∈ ∅ → suc 𝐴 ∈ suc ∅))) |
5 | | eleq2 2230 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
6 | | suceq 4380 |
. . . . 5
⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) |
7 | 6 | eleq2d 2236 |
. . . 4
⊢ (𝑥 = 𝑦 → (suc 𝐴 ∈ suc 𝑥 ↔ suc 𝐴 ∈ suc 𝑦)) |
8 | 5, 7 | imbi12d 233 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐴 ∈ 𝑥 → suc 𝐴 ∈ suc 𝑥) ↔ (𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦))) |
9 | | eleq2 2230 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ suc 𝑦)) |
10 | | suceq 4380 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦) |
11 | 10 | eleq2d 2236 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (suc 𝐴 ∈ suc 𝑥 ↔ suc 𝐴 ∈ suc suc 𝑦)) |
12 | 9, 11 | imbi12d 233 |
. . 3
⊢ (𝑥 = suc 𝑦 → ((𝐴 ∈ 𝑥 → suc 𝐴 ∈ suc 𝑥) ↔ (𝐴 ∈ suc 𝑦 → suc 𝐴 ∈ suc suc 𝑦))) |
13 | | eleq2 2230 |
. . . 4
⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) |
14 | | suceq 4380 |
. . . . 5
⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) |
15 | 14 | eleq2d 2236 |
. . . 4
⊢ (𝑥 = 𝐵 → (suc 𝐴 ∈ suc 𝑥 ↔ suc 𝐴 ∈ suc 𝐵)) |
16 | 13, 15 | imbi12d 233 |
. . 3
⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 → suc 𝐴 ∈ suc 𝑥) ↔ (𝐴 ∈ 𝐵 → suc 𝐴 ∈ suc 𝐵))) |
17 | | noel 3413 |
. . . 4
⊢ ¬
𝐴 ∈
∅ |
18 | 17 | pm2.21i 636 |
. . 3
⊢ (𝐴 ∈ ∅ → suc 𝐴 ∈ suc
∅) |
19 | | elsuci 4381 |
. . . . . . . 8
⊢ (𝐴 ∈ suc 𝑦 → (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦)) |
20 | 19 | adantl 275 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦)) |
21 | | simpl 108 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → (𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦)) |
22 | | suceq 4380 |
. . . . . . . . 9
⊢ (𝐴 = 𝑦 → suc 𝐴 = suc 𝑦) |
23 | 22 | a1i 9 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → (𝐴 = 𝑦 → suc 𝐴 = suc 𝑦)) |
24 | 21, 23 | orim12d 776 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → (suc 𝐴 ∈ suc 𝑦 ∨ suc 𝐴 = suc 𝑦))) |
25 | 20, 24 | mpd 13 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → (suc 𝐴 ∈ suc 𝑦 ∨ suc 𝐴 = suc 𝑦)) |
26 | | vex 2729 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
27 | 26 | sucex 4476 |
. . . . . . 7
⊢ suc 𝑦 ∈ V |
28 | 27 | elsuc2 4385 |
. . . . . 6
⊢ (suc
𝐴 ∈ suc suc 𝑦 ↔ (suc 𝐴 ∈ suc 𝑦 ∨ suc 𝐴 = suc 𝑦)) |
29 | 25, 28 | sylibr 133 |
. . . . 5
⊢ (((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) ∧ 𝐴 ∈ suc 𝑦) → suc 𝐴 ∈ suc suc 𝑦) |
30 | 29 | ex 114 |
. . . 4
⊢ ((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) → (𝐴 ∈ suc 𝑦 → suc 𝐴 ∈ suc suc 𝑦)) |
31 | 30 | a1i 9 |
. . 3
⊢ (𝑦 ∈ ω → ((𝐴 ∈ 𝑦 → suc 𝐴 ∈ suc 𝑦) → (𝐴 ∈ suc 𝑦 → suc 𝐴 ∈ suc suc 𝑦))) |
32 | 4, 8, 12, 16, 18, 31 | finds 4577 |
. 2
⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 → suc 𝐴 ∈ suc 𝐵)) |
33 | | nnon 4587 |
. . 3
⊢ (𝐵 ∈ ω → 𝐵 ∈ On) |
34 | | onsucelsucr 4485 |
. . 3
⊢ (𝐵 ∈ On → (suc 𝐴 ∈ suc 𝐵 → 𝐴 ∈ 𝐵)) |
35 | 33, 34 | syl 14 |
. 2
⊢ (𝐵 ∈ ω → (suc
𝐴 ∈ suc 𝐵 → 𝐴 ∈ 𝐵)) |
36 | 32, 35 | impbid 128 |
1
⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵)) |