ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0enne GIF version

Theorem nn0enne 11610
Description: A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
nn0enne (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ))

Proof of Theorem nn0enne
StepHypRef Expression
1 elnn0 8991 . . . 4 ((𝑁 / 2) ∈ ℕ0 ↔ ((𝑁 / 2) ∈ ℕ ∨ (𝑁 / 2) = 0))
2 nncn 8740 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3 2cnd 8805 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℂ)
4 2ap0 8825 . . . . . . . . 9 2 # 0
54a1i 9 . . . . . . . 8 (𝑁 ∈ ℕ → 2 # 0)
62, 3, 5diveqap0ad 8572 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 / 2) = 0 ↔ 𝑁 = 0))
7 eleq1 2202 . . . . . . . . 9 (𝑁 = 0 → (𝑁 ∈ ℕ ↔ 0 ∈ ℕ))
8 0nnn 8759 . . . . . . . . . 10 ¬ 0 ∈ ℕ
98pm2.21i 635 . . . . . . . . 9 (0 ∈ ℕ → (𝑁 / 2) ∈ ℕ)
107, 9syl6bi 162 . . . . . . . 8 (𝑁 = 0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1110com12 30 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 = 0 → (𝑁 / 2) ∈ ℕ))
126, 11sylbid 149 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 / 2) = 0 → (𝑁 / 2) ∈ ℕ))
1312com12 30 . . . . 5 ((𝑁 / 2) = 0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1413jao1i 785 . . . 4 (((𝑁 / 2) ∈ ℕ ∨ (𝑁 / 2) = 0) → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
151, 14sylbi 120 . . 3 ((𝑁 / 2) ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1615com12 30 . 2 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℕ))
17 nnnn0 8996 . 2 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ0)
1816, 17impbid1 141 1 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 697   = wceq 1331  wcel 1480   class class class wbr 3929  (class class class)co 5774  0cc0 7632   # cap 8355   / cdiv 8444  cn 8732  2c2 8783  0cn0 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-n0 8990
This theorem is referenced by:  nnehalf  11612
  Copyright terms: Public domain W3C validator