ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0enne GIF version

Theorem nn0enne 12288
Description: A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
nn0enne (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ))

Proof of Theorem nn0enne
StepHypRef Expression
1 elnn0 9317 . . . 4 ((𝑁 / 2) ∈ ℕ0 ↔ ((𝑁 / 2) ∈ ℕ ∨ (𝑁 / 2) = 0))
2 nncn 9064 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3 2cnd 9129 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℂ)
4 2ap0 9149 . . . . . . . . 9 2 # 0
54a1i 9 . . . . . . . 8 (𝑁 ∈ ℕ → 2 # 0)
62, 3, 5diveqap0ad 8893 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 / 2) = 0 ↔ 𝑁 = 0))
7 eleq1 2269 . . . . . . . . 9 (𝑁 = 0 → (𝑁 ∈ ℕ ↔ 0 ∈ ℕ))
8 0nnn 9083 . . . . . . . . . 10 ¬ 0 ∈ ℕ
98pm2.21i 647 . . . . . . . . 9 (0 ∈ ℕ → (𝑁 / 2) ∈ ℕ)
107, 9biimtrdi 163 . . . . . . . 8 (𝑁 = 0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1110com12 30 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 = 0 → (𝑁 / 2) ∈ ℕ))
126, 11sylbid 150 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 / 2) = 0 → (𝑁 / 2) ∈ ℕ))
1312com12 30 . . . . 5 ((𝑁 / 2) = 0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1413jao1i 798 . . . 4 (((𝑁 / 2) ∈ ℕ ∨ (𝑁 / 2) = 0) → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
151, 14sylbi 121 . . 3 ((𝑁 / 2) ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1615com12 30 . 2 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℕ))
17 nnnn0 9322 . 2 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ0)
1816, 17impbid1 142 1 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 710   = wceq 1373  wcel 2177   class class class wbr 4051  (class class class)co 5957  0cc0 7945   # cap 8674   / cdiv 8765  cn 9056  2c2 9107  0cn0 9315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-id 4348  df-po 4351  df-iso 4352  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-n0 9316
This theorem is referenced by:  nnehalf  12290
  Copyright terms: Public domain W3C validator