ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0enne GIF version

Theorem nn0enne 10777
Description: A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
nn0enne (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ))

Proof of Theorem nn0enne
StepHypRef Expression
1 elnn0 8608 . . . 4 ((𝑁 / 2) ∈ ℕ0 ↔ ((𝑁 / 2) ∈ ℕ ∨ (𝑁 / 2) = 0))
2 nncn 8365 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3 2cnd 8430 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℂ)
4 2ap0 8450 . . . . . . . . 9 2 # 0
54a1i 9 . . . . . . . 8 (𝑁 ∈ ℕ → 2 # 0)
62, 3, 5diveqap0ad 8205 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 / 2) = 0 ↔ 𝑁 = 0))
7 eleq1 2147 . . . . . . . . 9 (𝑁 = 0 → (𝑁 ∈ ℕ ↔ 0 ∈ ℕ))
8 0nnn 8384 . . . . . . . . . 10 ¬ 0 ∈ ℕ
98pm2.21i 608 . . . . . . . . 9 (0 ∈ ℕ → (𝑁 / 2) ∈ ℕ)
107, 9syl6bi 161 . . . . . . . 8 (𝑁 = 0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1110com12 30 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 = 0 → (𝑁 / 2) ∈ ℕ))
126, 11sylbid 148 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 / 2) = 0 → (𝑁 / 2) ∈ ℕ))
1312com12 30 . . . . 5 ((𝑁 / 2) = 0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1413jao1i 743 . . . 4 (((𝑁 / 2) ∈ ℕ ∨ (𝑁 / 2) = 0) → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
151, 14sylbi 119 . . 3 ((𝑁 / 2) ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1615com12 30 . 2 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℕ))
17 nnnn0 8613 . 2 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ0)
1816, 17impbid1 140 1 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wo 662   = wceq 1287  wcel 1436   class class class wbr 3820  (class class class)co 5613  0cc0 7294   # cap 7999   / cdiv 8078  cn 8357  2c2 8407  0cn0 8606
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-mulrcl 7388  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-precex 7399  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405  ax-pre-mulgt0 7406  ax-pre-mulext 7407
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-br 3821  df-opab 3875  df-id 4094  df-po 4097  df-iso 4098  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-iota 4946  df-fun 4983  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-reap 7993  df-ap 8000  df-div 8079  df-inn 8358  df-2 8416  df-n0 8607
This theorem is referenced by:  nnehalf  10779
  Copyright terms: Public domain W3C validator