Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0enne | GIF version |
Description: A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.) |
Ref | Expression |
---|---|
nn0enne | ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9137 | . . . 4 ⊢ ((𝑁 / 2) ∈ ℕ0 ↔ ((𝑁 / 2) ∈ ℕ ∨ (𝑁 / 2) = 0)) | |
2 | nncn 8886 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
3 | 2cnd 8951 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℂ) | |
4 | 2ap0 8971 | . . . . . . . . 9 ⊢ 2 # 0 | |
5 | 4 | a1i 9 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 2 # 0) |
6 | 2, 3, 5 | diveqap0ad 8717 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) = 0 ↔ 𝑁 = 0)) |
7 | eleq1 2233 | . . . . . . . . 9 ⊢ (𝑁 = 0 → (𝑁 ∈ ℕ ↔ 0 ∈ ℕ)) | |
8 | 0nnn 8905 | . . . . . . . . . 10 ⊢ ¬ 0 ∈ ℕ | |
9 | 8 | pm2.21i 641 | . . . . . . . . 9 ⊢ (0 ∈ ℕ → (𝑁 / 2) ∈ ℕ) |
10 | 7, 9 | syl6bi 162 | . . . . . . . 8 ⊢ (𝑁 = 0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ)) |
11 | 10 | com12 30 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 = 0 → (𝑁 / 2) ∈ ℕ)) |
12 | 6, 11 | sylbid 149 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) = 0 → (𝑁 / 2) ∈ ℕ)) |
13 | 12 | com12 30 | . . . . 5 ⊢ ((𝑁 / 2) = 0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ)) |
14 | 13 | jao1i 791 | . . . 4 ⊢ (((𝑁 / 2) ∈ ℕ ∨ (𝑁 / 2) = 0) → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ)) |
15 | 1, 14 | sylbi 120 | . . 3 ⊢ ((𝑁 / 2) ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ)) |
16 | 15 | com12 30 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℕ)) |
17 | nnnn0 9142 | . 2 ⊢ ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ0) | |
18 | 16, 17 | impbid1 141 | 1 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 703 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 0cc0 7774 # cap 8500 / cdiv 8589 ℕcn 8878 2c2 8929 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-n0 9136 |
This theorem is referenced by: nnehalf 11863 |
Copyright terms: Public domain | W3C validator |