Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0enne | GIF version |
Description: A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.) |
Ref | Expression |
---|---|
nn0enne | ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9149 | . . . 4 ⊢ ((𝑁 / 2) ∈ ℕ0 ↔ ((𝑁 / 2) ∈ ℕ ∨ (𝑁 / 2) = 0)) | |
2 | nncn 8898 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
3 | 2cnd 8963 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℂ) | |
4 | 2ap0 8983 | . . . . . . . . 9 ⊢ 2 # 0 | |
5 | 4 | a1i 9 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 2 # 0) |
6 | 2, 3, 5 | diveqap0ad 8729 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) = 0 ↔ 𝑁 = 0)) |
7 | eleq1 2238 | . . . . . . . . 9 ⊢ (𝑁 = 0 → (𝑁 ∈ ℕ ↔ 0 ∈ ℕ)) | |
8 | 0nnn 8917 | . . . . . . . . . 10 ⊢ ¬ 0 ∈ ℕ | |
9 | 8 | pm2.21i 646 | . . . . . . . . 9 ⊢ (0 ∈ ℕ → (𝑁 / 2) ∈ ℕ) |
10 | 7, 9 | syl6bi 163 | . . . . . . . 8 ⊢ (𝑁 = 0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ)) |
11 | 10 | com12 30 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 = 0 → (𝑁 / 2) ∈ ℕ)) |
12 | 6, 11 | sylbid 150 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) = 0 → (𝑁 / 2) ∈ ℕ)) |
13 | 12 | com12 30 | . . . . 5 ⊢ ((𝑁 / 2) = 0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ)) |
14 | 13 | jao1i 796 | . . . 4 ⊢ (((𝑁 / 2) ∈ ℕ ∨ (𝑁 / 2) = 0) → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ)) |
15 | 1, 14 | sylbi 121 | . . 3 ⊢ ((𝑁 / 2) ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ)) |
16 | 15 | com12 30 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℕ)) |
17 | nnnn0 9154 | . 2 ⊢ ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ0) | |
18 | 16, 17 | impbid1 142 | 1 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2146 class class class wbr 3998 (class class class)co 5865 0cc0 7786 # cap 8512 / cdiv 8601 ℕcn 8890 2c2 8941 ℕ0cn0 9147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-2 8949 df-n0 9148 |
This theorem is referenced by: nnehalf 11874 |
Copyright terms: Public domain | W3C validator |