| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0enne | GIF version | ||
| Description: A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.) |
| Ref | Expression |
|---|---|
| nn0enne | ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9367 | . . . 4 ⊢ ((𝑁 / 2) ∈ ℕ0 ↔ ((𝑁 / 2) ∈ ℕ ∨ (𝑁 / 2) = 0)) | |
| 2 | nncn 9114 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 3 | 2cnd 9179 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℂ) | |
| 4 | 2ap0 9199 | . . . . . . . . 9 ⊢ 2 # 0 | |
| 5 | 4 | a1i 9 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 2 # 0) |
| 6 | 2, 3, 5 | diveqap0ad 8943 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) = 0 ↔ 𝑁 = 0)) |
| 7 | eleq1 2292 | . . . . . . . . 9 ⊢ (𝑁 = 0 → (𝑁 ∈ ℕ ↔ 0 ∈ ℕ)) | |
| 8 | 0nnn 9133 | . . . . . . . . . 10 ⊢ ¬ 0 ∈ ℕ | |
| 9 | 8 | pm2.21i 649 | . . . . . . . . 9 ⊢ (0 ∈ ℕ → (𝑁 / 2) ∈ ℕ) |
| 10 | 7, 9 | biimtrdi 163 | . . . . . . . 8 ⊢ (𝑁 = 0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ)) |
| 11 | 10 | com12 30 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 = 0 → (𝑁 / 2) ∈ ℕ)) |
| 12 | 6, 11 | sylbid 150 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) = 0 → (𝑁 / 2) ∈ ℕ)) |
| 13 | 12 | com12 30 | . . . . 5 ⊢ ((𝑁 / 2) = 0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ)) |
| 14 | 13 | jao1i 801 | . . . 4 ⊢ (((𝑁 / 2) ∈ ℕ ∨ (𝑁 / 2) = 0) → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ)) |
| 15 | 1, 14 | sylbi 121 | . . 3 ⊢ ((𝑁 / 2) ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ)) |
| 16 | 15 | com12 30 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℕ)) |
| 17 | nnnn0 9372 | . 2 ⊢ ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ0) | |
| 18 | 16, 17 | impbid1 142 | 1 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 0cc0 7995 # cap 8724 / cdiv 8815 ℕcn 9106 2c2 9157 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-n0 9366 |
| This theorem is referenced by: nnehalf 12410 |
| Copyright terms: Public domain | W3C validator |