ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0enne GIF version

Theorem nn0enne 11907
Description: A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
nn0enne (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ))

Proof of Theorem nn0enne
StepHypRef Expression
1 elnn0 9178 . . . 4 ((𝑁 / 2) ∈ ℕ0 ↔ ((𝑁 / 2) ∈ ℕ ∨ (𝑁 / 2) = 0))
2 nncn 8927 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3 2cnd 8992 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℂ)
4 2ap0 9012 . . . . . . . . 9 2 # 0
54a1i 9 . . . . . . . 8 (𝑁 ∈ ℕ → 2 # 0)
62, 3, 5diveqap0ad 8757 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 / 2) = 0 ↔ 𝑁 = 0))
7 eleq1 2240 . . . . . . . . 9 (𝑁 = 0 → (𝑁 ∈ ℕ ↔ 0 ∈ ℕ))
8 0nnn 8946 . . . . . . . . . 10 ¬ 0 ∈ ℕ
98pm2.21i 646 . . . . . . . . 9 (0 ∈ ℕ → (𝑁 / 2) ∈ ℕ)
107, 9syl6bi 163 . . . . . . . 8 (𝑁 = 0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1110com12 30 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 = 0 → (𝑁 / 2) ∈ ℕ))
126, 11sylbid 150 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 / 2) = 0 → (𝑁 / 2) ∈ ℕ))
1312com12 30 . . . . 5 ((𝑁 / 2) = 0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1413jao1i 796 . . . 4 (((𝑁 / 2) ∈ ℕ ∨ (𝑁 / 2) = 0) → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
151, 14sylbi 121 . . 3 ((𝑁 / 2) ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑁 / 2) ∈ ℕ))
1615com12 30 . 2 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℕ))
17 nnnn0 9183 . 2 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ0)
1816, 17impbid1 142 1 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 708   = wceq 1353  wcel 2148   class class class wbr 4004  (class class class)co 5875  0cc0 7811   # cap 8538   / cdiv 8629  cn 8919  2c2 8970  0cn0 9176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-id 4294  df-po 4297  df-iso 4298  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-n0 9177
This theorem is referenced by:  nnehalf  11909
  Copyright terms: Public domain W3C validator