![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fniniseg2 | GIF version |
Description: Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fniniseg2 | ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {𝐵}) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fncnvima2 5459 | . 2 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {𝐵}) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ {𝐵}}) | |
2 | funfvex 5357 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
3 | elsng 3481 | . . . . 5 ⊢ ((𝐹‘𝑥) ∈ V → ((𝐹‘𝑥) ∈ {𝐵} ↔ (𝐹‘𝑥) = 𝐵)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) ∈ {𝐵} ↔ (𝐹‘𝑥) = 𝐵)) |
5 | 4 | funfni 5148 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ {𝐵} ↔ (𝐹‘𝑥) = 𝐵)) |
6 | 5 | rabbidva 2621 | . 2 ⊢ (𝐹 Fn 𝐴 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ {𝐵}} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝐵}) |
7 | 1, 6 | eqtrd 2127 | 1 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {𝐵}) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1296 ∈ wcel 1445 {crab 2374 Vcvv 2633 {csn 3466 ◡ccnv 4466 dom cdm 4467 “ cima 4470 Fun wfun 5043 Fn wfn 5044 ‘cfv 5049 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-sbc 2855 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-fv 5057 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |