ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fniniseg2 GIF version

Theorem fniniseg2 5681
Description: Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fniniseg2 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem fniniseg2
StepHypRef Expression
1 fncnvima2 5680 . 2 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ {𝐵}})
2 funfvex 5572 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
3 elsng 3634 . . . . 5 ((𝐹𝑥) ∈ V → ((𝐹𝑥) ∈ {𝐵} ↔ (𝐹𝑥) = 𝐵))
42, 3syl 14 . . . 4 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ {𝐵} ↔ (𝐹𝑥) = 𝐵))
54funfni 5355 . . 3 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) ∈ {𝐵} ↔ (𝐹𝑥) = 𝐵))
65rabbidva 2748 . 2 (𝐹 Fn 𝐴 → {𝑥𝐴 ∣ (𝐹𝑥) ∈ {𝐵}} = {𝑥𝐴 ∣ (𝐹𝑥) = 𝐵})
71, 6eqtrd 2226 1 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {crab 2476  Vcvv 2760  {csn 3619  ccnv 4659  dom cdm 4660  cima 4663  Fun wfun 5249   Fn wfn 5250  cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator