ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fniniseg2 GIF version

Theorem fniniseg2 5460
Description: Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fniniseg2 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem fniniseg2
StepHypRef Expression
1 fncnvima2 5459 . 2 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ {𝐵}})
2 funfvex 5357 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
3 elsng 3481 . . . . 5 ((𝐹𝑥) ∈ V → ((𝐹𝑥) ∈ {𝐵} ↔ (𝐹𝑥) = 𝐵))
42, 3syl 14 . . . 4 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ {𝐵} ↔ (𝐹𝑥) = 𝐵))
54funfni 5148 . . 3 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) ∈ {𝐵} ↔ (𝐹𝑥) = 𝐵))
65rabbidva 2621 . 2 (𝐹 Fn 𝐴 → {𝑥𝐴 ∣ (𝐹𝑥) ∈ {𝐵}} = {𝑥𝐴 ∣ (𝐹𝑥) = 𝐵})
71, 6eqtrd 2127 1 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1296  wcel 1445  {crab 2374  Vcvv 2633  {csn 3466  ccnv 4466  dom cdm 4467  cima 4470  Fun wfun 5043   Fn wfn 5044  cfv 5049
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-fv 5057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator