| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnniniseg2 | GIF version | ||
| Description: Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fnniniseg2 | ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (V ∖ {𝐵})) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fncnvima2 5701 | . 2 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (V ∖ {𝐵})) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (V ∖ {𝐵})}) | |
| 2 | eldifsn 3760 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ (V ∖ {𝐵}) ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝐵)) | |
| 3 | funfvex 5593 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
| 4 | 3 | funfni 5376 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
| 5 | 4 | biantrurd 305 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≠ 𝐵 ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝐵))) |
| 6 | 2, 5 | bitr4id 199 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (V ∖ {𝐵}) ↔ (𝐹‘𝑥) ≠ 𝐵)) |
| 7 | 6 | rabbidva 2760 | . 2 ⊢ (𝐹 Fn 𝐴 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (V ∖ {𝐵})} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝐵}) |
| 8 | 1, 7 | eqtrd 2238 | 1 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (V ∖ {𝐵})) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 {crab 2488 Vcvv 2772 ∖ cdif 3163 {csn 3633 ◡ccnv 4674 “ cima 4678 Fn wfn 5266 ‘cfv 5271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |