![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnniniseg2 | GIF version |
Description: Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fnniniseg2 | ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (V ∖ {𝐵})) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fncnvima2 5680 | . 2 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (V ∖ {𝐵})) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (V ∖ {𝐵})}) | |
2 | eldifsn 3746 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ (V ∖ {𝐵}) ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝐵)) | |
3 | funfvex 5572 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
4 | 3 | funfni 5355 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
5 | 4 | biantrurd 305 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≠ 𝐵 ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝐵))) |
6 | 2, 5 | bitr4id 199 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (V ∖ {𝐵}) ↔ (𝐹‘𝑥) ≠ 𝐵)) |
7 | 6 | rabbidva 2748 | . 2 ⊢ (𝐹 Fn 𝐴 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (V ∖ {𝐵})} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝐵}) |
8 | 1, 7 | eqtrd 2226 | 1 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (V ∖ {𝐵})) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 {crab 2476 Vcvv 2760 ∖ cdif 3151 {csn 3619 ◡ccnv 4659 “ cima 4663 Fn wfn 5250 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |