ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnniniseg2 GIF version

Theorem fnniniseg2 5757
Description: Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fnniniseg2 (𝐹 Fn 𝐴 → (𝐹 “ (V ∖ {𝐵})) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem fnniniseg2
StepHypRef Expression
1 fncnvima2 5755 . 2 (𝐹 Fn 𝐴 → (𝐹 “ (V ∖ {𝐵})) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {𝐵})})
2 eldifsn 3794 . . . 4 ((𝐹𝑥) ∈ (V ∖ {𝐵}) ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝐵))
3 funfvex 5643 . . . . . 6 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
43funfni 5422 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
54biantrurd 305 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) ≠ 𝐵 ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝐵)))
62, 5bitr4id 199 . . 3 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) ∈ (V ∖ {𝐵}) ↔ (𝐹𝑥) ≠ 𝐵))
76rabbidva 2787 . 2 (𝐹 Fn 𝐴 → {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {𝐵})} = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝐵})
81, 7eqtrd 2262 1 (𝐹 Fn 𝐴 → (𝐹 “ (V ∖ {𝐵})) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wne 2400  {crab 2512  Vcvv 2799  cdif 3194  {csn 3666  ccnv 4717  cima 4721   Fn wfn 5312  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator