Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnniniseg2 | GIF version |
Description: Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fnniniseg2 | ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (V ∖ {𝐵})) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fncnvima2 5606 | . 2 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (V ∖ {𝐵})) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (V ∖ {𝐵})}) | |
2 | eldifsn 3703 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ (V ∖ {𝐵}) ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝐵)) | |
3 | funfvex 5503 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
4 | 3 | funfni 5288 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
5 | 4 | biantrurd 303 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≠ 𝐵 ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝐵))) |
6 | 2, 5 | bitr4id 198 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (V ∖ {𝐵}) ↔ (𝐹‘𝑥) ≠ 𝐵)) |
7 | 6 | rabbidva 2714 | . 2 ⊢ (𝐹 Fn 𝐴 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (V ∖ {𝐵})} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝐵}) |
8 | 1, 7 | eqtrd 2198 | 1 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (V ∖ {𝐵})) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 {crab 2448 Vcvv 2726 ∖ cdif 3113 {csn 3576 ◡ccnv 4603 “ cima 4607 Fn wfn 5183 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |