ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnniniseg2 GIF version

Theorem fnniniseg2 5652
Description: Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fnniniseg2 (𝐹 Fn 𝐴 → (𝐹 “ (V ∖ {𝐵})) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem fnniniseg2
StepHypRef Expression
1 fncnvima2 5650 . 2 (𝐹 Fn 𝐴 → (𝐹 “ (V ∖ {𝐵})) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {𝐵})})
2 eldifsn 3731 . . . 4 ((𝐹𝑥) ∈ (V ∖ {𝐵}) ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝐵))
3 funfvex 5544 . . . . . 6 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
43funfni 5328 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
54biantrurd 305 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) ≠ 𝐵 ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝐵)))
62, 5bitr4id 199 . . 3 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) ∈ (V ∖ {𝐵}) ↔ (𝐹𝑥) ≠ 𝐵))
76rabbidva 2737 . 2 (𝐹 Fn 𝐴 → {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {𝐵})} = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝐵})
81, 7eqtrd 2220 1 (𝐹 Fn 𝐴 → (𝐹 “ (V ∖ {𝐵})) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wcel 2158  wne 2357  {crab 2469  Vcvv 2749  cdif 3138  {csn 3604  ccnv 4637  cima 4641   Fn wfn 5223  cfv 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator