Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnniniseg2 | GIF version |
Description: Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fnniniseg2 | ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (V ∖ {𝐵})) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fncnvima2 5629 | . 2 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (V ∖ {𝐵})) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (V ∖ {𝐵})}) | |
2 | eldifsn 3716 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ (V ∖ {𝐵}) ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝐵)) | |
3 | funfvex 5524 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
4 | 3 | funfni 5308 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
5 | 4 | biantrurd 305 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≠ 𝐵 ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝐵))) |
6 | 2, 5 | bitr4id 199 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (V ∖ {𝐵}) ↔ (𝐹‘𝑥) ≠ 𝐵)) |
7 | 6 | rabbidva 2723 | . 2 ⊢ (𝐹 Fn 𝐴 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (V ∖ {𝐵})} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝐵}) |
8 | 1, 7 | eqtrd 2208 | 1 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (V ∖ {𝐵})) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ≠ wne 2345 {crab 2457 Vcvv 2735 ∖ cdif 3124 {csn 3589 ◡ccnv 4619 “ cima 4623 Fn wfn 5203 ‘cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |