![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnniniseg2 | GIF version |
Description: Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fnniniseg2 | ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (V ∖ {𝐵})) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fncnvima2 5650 | . 2 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (V ∖ {𝐵})) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (V ∖ {𝐵})}) | |
2 | eldifsn 3731 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ (V ∖ {𝐵}) ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝐵)) | |
3 | funfvex 5544 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
4 | 3 | funfni 5328 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
5 | 4 | biantrurd 305 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≠ 𝐵 ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝐵))) |
6 | 2, 5 | bitr4id 199 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (V ∖ {𝐵}) ↔ (𝐹‘𝑥) ≠ 𝐵)) |
7 | 6 | rabbidva 2737 | . 2 ⊢ (𝐹 Fn 𝐴 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (V ∖ {𝐵})} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝐵}) |
8 | 1, 7 | eqtrd 2220 | 1 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (V ∖ {𝐵})) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2158 ≠ wne 2357 {crab 2469 Vcvv 2749 ∖ cdif 3138 {csn 3604 ◡ccnv 4637 “ cima 4641 Fn wfn 5223 ‘cfv 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-fv 5236 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |