ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooinsup GIF version

Theorem iooinsup 11658
Description: Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
Assertion
Ref Expression
iooinsup (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, < )))

Proof of Theorem iooinsup
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 inrab 3449 . . 3 ({𝑧 ∈ ℝ* ∣ (𝐴 < 𝑧𝑧 < 𝐵)} ∩ {𝑧 ∈ ℝ* ∣ (𝐶 < 𝑧𝑧 < 𝐷)}) = {𝑧 ∈ ℝ* ∣ ((𝐴 < 𝑧𝑧 < 𝐵) ∧ (𝐶 < 𝑧𝑧 < 𝐷))}
2 iooval 10045 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴 < 𝑧𝑧 < 𝐵)})
3 iooval 10045 . . . 4 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐶(,)𝐷) = {𝑧 ∈ ℝ* ∣ (𝐶 < 𝑧𝑧 < 𝐷)})
42, 3ineqan12d 3380 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ({𝑧 ∈ ℝ* ∣ (𝐴 < 𝑧𝑧 < 𝐵)} ∩ {𝑧 ∈ ℝ* ∣ (𝐶 < 𝑧𝑧 < 𝐷)}))
5 xrmaxltsup 11639 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑧 ∈ ℝ*) → (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧 ↔ (𝐴 < 𝑧𝐶 < 𝑧)))
65ad4ant124 1219 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧 ↔ (𝐴 < 𝑧𝐶 < 𝑧)))
7 xrltmininf 11651 . . . . . . . . . 10 ((𝑧 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → (𝑧 < inf({𝐵, 𝐷}, ℝ*, < ) ↔ (𝑧 < 𝐵𝑧 < 𝐷)))
873expb 1207 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) → (𝑧 < inf({𝐵, 𝐷}, ℝ*, < ) ↔ (𝑧 < 𝐵𝑧 < 𝐷)))
98ancoms 268 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐷 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (𝑧 < inf({𝐵, 𝐷}, ℝ*, < ) ↔ (𝑧 < 𝐵𝑧 < 𝐷)))
109adantll 476 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → (𝑧 < inf({𝐵, 𝐷}, ℝ*, < ) ↔ (𝑧 < 𝐵𝑧 < 𝐷)))
116, 10anbi12d 473 . . . . . 6 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → ((sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < )) ↔ ((𝐴 < 𝑧𝐶 < 𝑧) ∧ (𝑧 < 𝐵𝑧 < 𝐷))))
12 an4 586 . . . . . 6 (((𝐴 < 𝑧𝑧 < 𝐵) ∧ (𝐶 < 𝑧𝑧 < 𝐷)) ↔ ((𝐴 < 𝑧𝐶 < 𝑧) ∧ (𝑧 < 𝐵𝑧 < 𝐷)))
1311, 12bitr4di 198 . . . . 5 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → ((sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < )) ↔ ((𝐴 < 𝑧𝑧 < 𝐵) ∧ (𝐶 < 𝑧𝑧 < 𝐷))))
1413rabbidva 2761 . . . 4 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) → {𝑧 ∈ ℝ* ∣ (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < ))} = {𝑧 ∈ ℝ* ∣ ((𝐴 < 𝑧𝑧 < 𝐵) ∧ (𝐶 < 𝑧𝑧 < 𝐷))})
1514an4s 588 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → {𝑧 ∈ ℝ* ∣ (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < ))} = {𝑧 ∈ ℝ* ∣ ((𝐴 < 𝑧𝑧 < 𝐵) ∧ (𝐶 < 𝑧𝑧 < 𝐷))})
161, 4, 153eqtr4a 2265 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = {𝑧 ∈ ℝ* ∣ (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < ))})
17 xrmaxcl 11633 . . . 4 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → sup({𝐴, 𝐶}, ℝ*, < ) ∈ ℝ*)
18 xrmincl 11647 . . . 4 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → inf({𝐵, 𝐷}, ℝ*, < ) ∈ ℝ*)
19 iooval 10045 . . . 4 ((sup({𝐴, 𝐶}, ℝ*, < ) ∈ ℝ* ∧ inf({𝐵, 𝐷}, ℝ*, < ) ∈ ℝ*) → (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, < )) = {𝑧 ∈ ℝ* ∣ (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < ))})
2017, 18, 19syl2an 289 . . 3 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) → (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, < )) = {𝑧 ∈ ℝ* ∣ (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < ))})
2120an4s 588 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, < )) = {𝑧 ∈ ℝ* ∣ (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < ))})
2216, 21eqtr4d 2242 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, < )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {crab 2489  cin 3169  {cpr 3638   class class class wbr 4050  (class class class)co 5956  supcsup 7098  infcinf 7099  *cxr 8121   < clt 8122  (,)cioo 10025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059  ax-caucvg 8060
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-isom 5288  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-sup 7100  df-inf 7101  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-n0 9311  df-z 9388  df-uz 9664  df-rp 9791  df-xneg 9909  df-ioo 10029  df-seqfrec 10610  df-exp 10701  df-cj 11223  df-re 11224  df-im 11225  df-rsqrt 11379  df-abs 11380
This theorem is referenced by:  qtopbasss  15063  tgioo  15096
  Copyright terms: Public domain W3C validator