ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooinsup GIF version

Theorem iooinsup 11298
Description: Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
Assertion
Ref Expression
iooinsup (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, < )))

Proof of Theorem iooinsup
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 inrab 3419 . . 3 ({𝑧 ∈ ℝ* ∣ (𝐴 < 𝑧𝑧 < 𝐵)} ∩ {𝑧 ∈ ℝ* ∣ (𝐶 < 𝑧𝑧 < 𝐷)}) = {𝑧 ∈ ℝ* ∣ ((𝐴 < 𝑧𝑧 < 𝐵) ∧ (𝐶 < 𝑧𝑧 < 𝐷))}
2 iooval 9921 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴 < 𝑧𝑧 < 𝐵)})
3 iooval 9921 . . . 4 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐶(,)𝐷) = {𝑧 ∈ ℝ* ∣ (𝐶 < 𝑧𝑧 < 𝐷)})
42, 3ineqan12d 3350 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ({𝑧 ∈ ℝ* ∣ (𝐴 < 𝑧𝑧 < 𝐵)} ∩ {𝑧 ∈ ℝ* ∣ (𝐶 < 𝑧𝑧 < 𝐷)}))
5 xrmaxltsup 11279 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑧 ∈ ℝ*) → (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧 ↔ (𝐴 < 𝑧𝐶 < 𝑧)))
65ad4ant124 1217 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧 ↔ (𝐴 < 𝑧𝐶 < 𝑧)))
7 xrltmininf 11291 . . . . . . . . . 10 ((𝑧 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → (𝑧 < inf({𝐵, 𝐷}, ℝ*, < ) ↔ (𝑧 < 𝐵𝑧 < 𝐷)))
873expb 1205 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) → (𝑧 < inf({𝐵, 𝐷}, ℝ*, < ) ↔ (𝑧 < 𝐵𝑧 < 𝐷)))
98ancoms 268 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐷 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (𝑧 < inf({𝐵, 𝐷}, ℝ*, < ) ↔ (𝑧 < 𝐵𝑧 < 𝐷)))
109adantll 476 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → (𝑧 < inf({𝐵, 𝐷}, ℝ*, < ) ↔ (𝑧 < 𝐵𝑧 < 𝐷)))
116, 10anbi12d 473 . . . . . 6 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → ((sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < )) ↔ ((𝐴 < 𝑧𝐶 < 𝑧) ∧ (𝑧 < 𝐵𝑧 < 𝐷))))
12 an4 586 . . . . . 6 (((𝐴 < 𝑧𝑧 < 𝐵) ∧ (𝐶 < 𝑧𝑧 < 𝐷)) ↔ ((𝐴 < 𝑧𝐶 < 𝑧) ∧ (𝑧 < 𝐵𝑧 < 𝐷)))
1311, 12bitr4di 198 . . . . 5 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → ((sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < )) ↔ ((𝐴 < 𝑧𝑧 < 𝐵) ∧ (𝐶 < 𝑧𝑧 < 𝐷))))
1413rabbidva 2737 . . . 4 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) → {𝑧 ∈ ℝ* ∣ (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < ))} = {𝑧 ∈ ℝ* ∣ ((𝐴 < 𝑧𝑧 < 𝐵) ∧ (𝐶 < 𝑧𝑧 < 𝐷))})
1514an4s 588 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → {𝑧 ∈ ℝ* ∣ (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < ))} = {𝑧 ∈ ℝ* ∣ ((𝐴 < 𝑧𝑧 < 𝐵) ∧ (𝐶 < 𝑧𝑧 < 𝐷))})
161, 4, 153eqtr4a 2246 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = {𝑧 ∈ ℝ* ∣ (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < ))})
17 xrmaxcl 11273 . . . 4 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → sup({𝐴, 𝐶}, ℝ*, < ) ∈ ℝ*)
18 xrmincl 11287 . . . 4 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → inf({𝐵, 𝐷}, ℝ*, < ) ∈ ℝ*)
19 iooval 9921 . . . 4 ((sup({𝐴, 𝐶}, ℝ*, < ) ∈ ℝ* ∧ inf({𝐵, 𝐷}, ℝ*, < ) ∈ ℝ*) → (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, < )) = {𝑧 ∈ ℝ* ∣ (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < ))})
2017, 18, 19syl2an 289 . . 3 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) → (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, < )) = {𝑧 ∈ ℝ* ∣ (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < ))})
2120an4s 588 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, < )) = {𝑧 ∈ ℝ* ∣ (sup({𝐴, 𝐶}, ℝ*, < ) < 𝑧𝑧 < inf({𝐵, 𝐷}, ℝ*, < ))})
2216, 21eqtr4d 2223 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, < )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1363  wcel 2158  {crab 2469  cin 3140  {cpr 3605   class class class wbr 4015  (class class class)co 5888  supcsup 6994  infcinf 6995  *cxr 8004   < clt 8005  (,)cioo 9901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-sup 6996  df-inf 6997  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-rp 9667  df-xneg 9785  df-ioo 9905  df-seqfrec 10459  df-exp 10533  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021
This theorem is referenced by:  qtopbasss  14261  tgioo  14286
  Copyright terms: Public domain W3C validator