ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdg0g GIF version

Theorem rdg0g 6215
Description: The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995.)
Assertion
Ref Expression
rdg0g (𝐴𝐶 → (rec(𝐹, 𝐴)‘∅) = 𝐴)

Proof of Theorem rdg0g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rdgeq2 6199 . . . 4 (𝑥 = 𝐴 → rec(𝐹, 𝑥) = rec(𝐹, 𝐴))
21fveq1d 5355 . . 3 (𝑥 = 𝐴 → (rec(𝐹, 𝑥)‘∅) = (rec(𝐹, 𝐴)‘∅))
3 id 19 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
42, 3eqeq12d 2114 . 2 (𝑥 = 𝐴 → ((rec(𝐹, 𝑥)‘∅) = 𝑥 ↔ (rec(𝐹, 𝐴)‘∅) = 𝐴))
5 vex 2644 . . 3 𝑥 ∈ V
65rdg0 6214 . 2 (rec(𝐹, 𝑥)‘∅) = 𝑥
74, 6vtoclg 2701 1 (𝐴𝐶 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1299  wcel 1448  c0 3310  cfv 5059  reccrdg 6196
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-res 4489  df-iota 5024  df-fun 5061  df-fn 5062  df-fv 5067  df-recs 6132  df-irdg 6197
This theorem is referenced by:  frecrdg  6235  oa0  6283  oei0  6285
  Copyright terms: Public domain W3C validator