![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rdg0g | GIF version |
Description: The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995.) |
Ref | Expression |
---|---|
rdg0g | ⊢ (𝐴 ∈ 𝐶 → (rec(𝐹, 𝐴)‘∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgeq2 6199 | . . . 4 ⊢ (𝑥 = 𝐴 → rec(𝐹, 𝑥) = rec(𝐹, 𝐴)) | |
2 | 1 | fveq1d 5355 | . . 3 ⊢ (𝑥 = 𝐴 → (rec(𝐹, 𝑥)‘∅) = (rec(𝐹, 𝐴)‘∅)) |
3 | id 19 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
4 | 2, 3 | eqeq12d 2114 | . 2 ⊢ (𝑥 = 𝐴 → ((rec(𝐹, 𝑥)‘∅) = 𝑥 ↔ (rec(𝐹, 𝐴)‘∅) = 𝐴)) |
5 | vex 2644 | . . 3 ⊢ 𝑥 ∈ V | |
6 | 5 | rdg0 6214 | . 2 ⊢ (rec(𝐹, 𝑥)‘∅) = 𝑥 |
7 | 4, 6 | vtoclg 2701 | 1 ⊢ (𝐴 ∈ 𝐶 → (rec(𝐹, 𝐴)‘∅) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 ∈ wcel 1448 ∅c0 3310 ‘cfv 5059 reccrdg 6196 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-id 4153 df-iord 4226 df-on 4228 df-suc 4231 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-res 4489 df-iota 5024 df-fun 5061 df-fn 5062 df-fv 5067 df-recs 6132 df-irdg 6197 |
This theorem is referenced by: frecrdg 6235 oa0 6283 oei0 6285 |
Copyright terms: Public domain | W3C validator |