| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdg0g | GIF version | ||
| Description: The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995.) |
| Ref | Expression |
|---|---|
| rdg0g | ⊢ (𝐴 ∈ 𝐶 → (rec(𝐹, 𝐴)‘∅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgeq2 6465 | . . . 4 ⊢ (𝑥 = 𝐴 → rec(𝐹, 𝑥) = rec(𝐹, 𝐴)) | |
| 2 | 1 | fveq1d 5585 | . . 3 ⊢ (𝑥 = 𝐴 → (rec(𝐹, 𝑥)‘∅) = (rec(𝐹, 𝐴)‘∅)) |
| 3 | id 19 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 4 | 2, 3 | eqeq12d 2221 | . 2 ⊢ (𝑥 = 𝐴 → ((rec(𝐹, 𝑥)‘∅) = 𝑥 ↔ (rec(𝐹, 𝐴)‘∅) = 𝐴)) |
| 5 | vex 2776 | . . 3 ⊢ 𝑥 ∈ V | |
| 6 | 5 | rdg0 6480 | . 2 ⊢ (rec(𝐹, 𝑥)‘∅) = 𝑥 |
| 7 | 4, 6 | vtoclg 2834 | 1 ⊢ (𝐴 ∈ 𝐶 → (rec(𝐹, 𝐴)‘∅) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∅c0 3461 ‘cfv 5276 reccrdg 6462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-recs 6398 df-irdg 6463 |
| This theorem is referenced by: frecrdg 6501 oa0 6550 oei0 6552 |
| Copyright terms: Public domain | W3C validator |