![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rdgfun | GIF version |
Description: The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
rdgfun | ⊢ Fun rec(𝐹, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2089 | . . 3 ⊢ {𝑓 ∣ ∃𝑦 ∈ On (𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘(𝑓 ↾ 𝑧)))} = {𝑓 ∣ ∃𝑦 ∈ On (𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘(𝑓 ↾ 𝑧)))} | |
2 | 1 | tfrlem7 6096 | . 2 ⊢ Fun recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) |
3 | df-irdg 6149 | . . 3 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) | |
4 | 3 | funeqi 5049 | . 2 ⊢ (Fun rec(𝐹, 𝐴) ↔ Fun recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))))) |
5 | 2, 4 | mpbir 145 | 1 ⊢ Fun rec(𝐹, 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1290 {cab 2075 ∀wral 2360 ∃wrex 2361 Vcvv 2620 ∪ cun 2998 ∪ ciun 3736 ↦ cmpt 3905 Oncon0 4199 dom cdm 4451 ↾ cres 4453 Fun wfun 5022 Fn wfn 5023 ‘cfv 5028 recscrecs 6083 reccrdg 6148 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-setind 4366 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-tr 3943 df-id 4129 df-iord 4202 df-on 4204 df-xp 4457 df-rel 4458 df-cnv 4459 df-co 4460 df-dm 4461 df-res 4463 df-iota 4993 df-fun 5030 df-fn 5031 df-fv 5036 df-recs 6084 df-irdg 6149 |
This theorem is referenced by: rdgivallem 6160 |
Copyright terms: Public domain | W3C validator |