![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rdgfun | GIF version |
Description: The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
rdgfun | ⊢ Fun rec(𝐹, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . 3 ⊢ {𝑓 ∣ ∃𝑦 ∈ On (𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘(𝑓 ↾ 𝑧)))} = {𝑓 ∣ ∃𝑦 ∈ On (𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘(𝑓 ↾ 𝑧)))} | |
2 | 1 | tfrlem7 6372 | . 2 ⊢ Fun recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) |
3 | df-irdg 6425 | . . 3 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) | |
4 | 3 | funeqi 5276 | . 2 ⊢ (Fun rec(𝐹, 𝐴) ↔ Fun recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))))) |
5 | 2, 4 | mpbir 146 | 1 ⊢ Fun rec(𝐹, 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 {cab 2179 ∀wral 2472 ∃wrex 2473 Vcvv 2760 ∪ cun 3152 ∪ ciun 3913 ↦ cmpt 4091 Oncon0 4395 dom cdm 4660 ↾ cres 4662 Fun wfun 5249 Fn wfn 5250 ‘cfv 5255 recscrecs 6359 reccrdg 6424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-recs 6360 df-irdg 6425 |
This theorem is referenced by: rdgivallem 6436 |
Copyright terms: Public domain | W3C validator |