ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgfun GIF version

Theorem rdgfun 6426
Description: The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
rdgfun Fun rec(𝐹, 𝐴)

Proof of Theorem rdgfun
Dummy variables 𝑥 𝑦 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3 {𝑓 ∣ ∃𝑦 ∈ On (𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑓𝑧) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘(𝑓𝑧)))} = {𝑓 ∣ ∃𝑦 ∈ On (𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑓𝑧) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘(𝑓𝑧)))}
21tfrlem7 6370 . 2 Fun recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
3 df-irdg 6423 . . 3 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
43funeqi 5275 . 2 (Fun rec(𝐹, 𝐴) ↔ Fun recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))))
52, 4mpbir 146 1 Fun rec(𝐹, 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  {cab 2179  wral 2472  wrex 2473  Vcvv 2760  cun 3151   ciun 3912  cmpt 4090  Oncon0 4394  dom cdm 4659  cres 4661  Fun wfun 5248   Fn wfn 5249  cfv 5254  recscrecs 6357  reccrdg 6422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-recs 6358  df-irdg 6423
This theorem is referenced by:  rdgivallem  6434
  Copyright terms: Public domain W3C validator