| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgfun | GIF version | ||
| Description: The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| rdgfun | ⊢ Fun rec(𝐹, 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . 3 ⊢ {𝑓 ∣ ∃𝑦 ∈ On (𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘(𝑓 ↾ 𝑧)))} = {𝑓 ∣ ∃𝑦 ∈ On (𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘(𝑓 ↾ 𝑧)))} | |
| 2 | 1 | tfrlem7 6416 | . 2 ⊢ Fun recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) |
| 3 | df-irdg 6469 | . . 3 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) | |
| 4 | 3 | funeqi 5301 | . 2 ⊢ (Fun rec(𝐹, 𝐴) ↔ Fun recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))))) |
| 5 | 2, 4 | mpbir 146 | 1 ⊢ Fun rec(𝐹, 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 {cab 2192 ∀wral 2485 ∃wrex 2486 Vcvv 2773 ∪ cun 3168 ∪ ciun 3933 ↦ cmpt 4113 Oncon0 4418 dom cdm 4683 ↾ cres 4685 Fun wfun 5274 Fn wfn 5275 ‘cfv 5280 recscrecs 6403 reccrdg 6468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-recs 6404 df-irdg 6469 |
| This theorem is referenced by: rdgivallem 6480 |
| Copyright terms: Public domain | W3C validator |