ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgfun GIF version

Theorem rdgfun 6472
Description: The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
rdgfun Fun rec(𝐹, 𝐴)

Proof of Theorem rdgfun
Dummy variables 𝑥 𝑦 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . 3 {𝑓 ∣ ∃𝑦 ∈ On (𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑓𝑧) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘(𝑓𝑧)))} = {𝑓 ∣ ∃𝑦 ∈ On (𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑓𝑧) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘(𝑓𝑧)))}
21tfrlem7 6416 . 2 Fun recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
3 df-irdg 6469 . . 3 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
43funeqi 5301 . 2 (Fun rec(𝐹, 𝐴) ↔ Fun recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))))
52, 4mpbir 146 1 Fun rec(𝐹, 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  {cab 2192  wral 2485  wrex 2486  Vcvv 2773  cun 3168   ciun 3933  cmpt 4113  Oncon0 4418  dom cdm 4683  cres 4685  Fun wfun 5274   Fn wfn 5275  cfv 5280  recscrecs 6403  reccrdg 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-recs 6404  df-irdg 6469
This theorem is referenced by:  rdgivallem  6480
  Copyright terms: Public domain W3C validator