ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oav GIF version

Theorem oav 6600
Description: Value of ordinal addition. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oav ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem oav
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oafnex 6590 . . 3 (𝑥 ∈ V ↦ suc 𝑥) Fn V
21rdgexgg 6524 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵) ∈ V)
3 rdgeq2 6518 . . . 4 (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ suc 𝑥), 𝑦) = rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴))
43fveq1d 5629 . . 3 (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝑦)‘𝑧) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝑧))
5 fveq2 5627 . . 3 (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝑧) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
6 df-oadd 6566 . . 3 +o = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ suc 𝑥), 𝑦)‘𝑧))
74, 5, 6ovmpog 6139 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵) ∈ V) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
82, 7mpd3an3 1372 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  cmpt 4145  Oncon0 4454  suc csuc 4456  cfv 5318  (class class class)co 6001  reccrdg 6515   +o coa 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-recs 6451  df-irdg 6516  df-oadd 6566
This theorem is referenced by:  oa0  6603  oacl  6606  oav2  6609  oawordi  6615
  Copyright terms: Public domain W3C validator