Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > structcnvcnv | GIF version |
Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
structcnvcnv | ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 = (𝐹 ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 4639 | . . . . . 6 ⊢ ¬ ∅ ∈ (V × V) | |
2 | cnvcnv 5063 | . . . . . . . 8 ⊢ ◡◡𝐹 = (𝐹 ∩ (V × V)) | |
3 | inss2 3348 | . . . . . . . 8 ⊢ (𝐹 ∩ (V × V)) ⊆ (V × V) | |
4 | 2, 3 | eqsstri 3179 | . . . . . . 7 ⊢ ◡◡𝐹 ⊆ (V × V) |
5 | 4 | sseli 3143 | . . . . . 6 ⊢ (∅ ∈ ◡◡𝐹 → ∅ ∈ (V × V)) |
6 | 1, 5 | mto 657 | . . . . 5 ⊢ ¬ ∅ ∈ ◡◡𝐹 |
7 | disjsn 3645 | . . . . 5 ⊢ ((◡◡𝐹 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ◡◡𝐹) | |
8 | 6, 7 | mpbir 145 | . . . 4 ⊢ (◡◡𝐹 ∩ {∅}) = ∅ |
9 | cnvcnvss 5065 | . . . . 5 ⊢ ◡◡𝐹 ⊆ 𝐹 | |
10 | reldisj 3466 | . . . . 5 ⊢ (◡◡𝐹 ⊆ 𝐹 → ((◡◡𝐹 ∩ {∅}) = ∅ ↔ ◡◡𝐹 ⊆ (𝐹 ∖ {∅}))) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ((◡◡𝐹 ∩ {∅}) = ∅ ↔ ◡◡𝐹 ⊆ (𝐹 ∖ {∅})) |
12 | 8, 11 | mpbi 144 | . . 3 ⊢ ◡◡𝐹 ⊆ (𝐹 ∖ {∅}) |
13 | 12 | a1i 9 | . 2 ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 ⊆ (𝐹 ∖ {∅})) |
14 | structn0fun 12429 | . . . . 5 ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) | |
15 | funrel 5215 | . . . . 5 ⊢ (Fun (𝐹 ∖ {∅}) → Rel (𝐹 ∖ {∅})) | |
16 | 14, 15 | syl 14 | . . . 4 ⊢ (𝐹 Struct 𝑋 → Rel (𝐹 ∖ {∅})) |
17 | dfrel2 5061 | . . . 4 ⊢ (Rel (𝐹 ∖ {∅}) ↔ ◡◡(𝐹 ∖ {∅}) = (𝐹 ∖ {∅})) | |
18 | 16, 17 | sylib 121 | . . 3 ⊢ (𝐹 Struct 𝑋 → ◡◡(𝐹 ∖ {∅}) = (𝐹 ∖ {∅})) |
19 | difss 3253 | . . . 4 ⊢ (𝐹 ∖ {∅}) ⊆ 𝐹 | |
20 | cnvss 4784 | . . . 4 ⊢ ((𝐹 ∖ {∅}) ⊆ 𝐹 → ◡(𝐹 ∖ {∅}) ⊆ ◡𝐹) | |
21 | cnvss 4784 | . . . 4 ⊢ (◡(𝐹 ∖ {∅}) ⊆ ◡𝐹 → ◡◡(𝐹 ∖ {∅}) ⊆ ◡◡𝐹) | |
22 | 19, 20, 21 | mp2b 8 | . . 3 ⊢ ◡◡(𝐹 ∖ {∅}) ⊆ ◡◡𝐹 |
23 | 18, 22 | eqsstrrdi 3200 | . 2 ⊢ (𝐹 Struct 𝑋 → (𝐹 ∖ {∅}) ⊆ ◡◡𝐹) |
24 | 13, 23 | eqssd 3164 | 1 ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 = (𝐹 ∖ {∅})) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ∖ cdif 3118 ∩ cin 3120 ⊆ wss 3121 ∅c0 3414 {csn 3583 class class class wbr 3989 × cxp 4609 ◡ccnv 4610 Rel wrel 4616 Fun wfun 5192 Struct cstr 12412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-struct 12418 |
This theorem is referenced by: structfung 12433 |
Copyright terms: Public domain | W3C validator |