ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structcnvcnv GIF version

Theorem structcnvcnv 12634
Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
structcnvcnv (𝐹 Struct 𝑋𝐹 = (𝐹 ∖ {∅}))

Proof of Theorem structcnvcnv
StepHypRef Expression
1 0nelxp 4687 . . . . . 6 ¬ ∅ ∈ (V × V)
2 cnvcnv 5118 . . . . . . . 8 𝐹 = (𝐹 ∩ (V × V))
3 inss2 3380 . . . . . . . 8 (𝐹 ∩ (V × V)) ⊆ (V × V)
42, 3eqsstri 3211 . . . . . . 7 𝐹 ⊆ (V × V)
54sseli 3175 . . . . . 6 (∅ ∈ 𝐹 → ∅ ∈ (V × V))
61, 5mto 663 . . . . 5 ¬ ∅ ∈ 𝐹
7 disjsn 3680 . . . . 5 ((𝐹 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝐹)
86, 7mpbir 146 . . . 4 (𝐹 ∩ {∅}) = ∅
9 cnvcnvss 5120 . . . . 5 𝐹𝐹
10 reldisj 3498 . . . . 5 (𝐹𝐹 → ((𝐹 ∩ {∅}) = ∅ ↔ 𝐹 ⊆ (𝐹 ∖ {∅})))
119, 10ax-mp 5 . . . 4 ((𝐹 ∩ {∅}) = ∅ ↔ 𝐹 ⊆ (𝐹 ∖ {∅}))
128, 11mpbi 145 . . 3 𝐹 ⊆ (𝐹 ∖ {∅})
1312a1i 9 . 2 (𝐹 Struct 𝑋𝐹 ⊆ (𝐹 ∖ {∅}))
14 structn0fun 12631 . . . . 5 (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}))
15 funrel 5271 . . . . 5 (Fun (𝐹 ∖ {∅}) → Rel (𝐹 ∖ {∅}))
1614, 15syl 14 . . . 4 (𝐹 Struct 𝑋 → Rel (𝐹 ∖ {∅}))
17 dfrel2 5116 . . . 4 (Rel (𝐹 ∖ {∅}) ↔ (𝐹 ∖ {∅}) = (𝐹 ∖ {∅}))
1816, 17sylib 122 . . 3 (𝐹 Struct 𝑋(𝐹 ∖ {∅}) = (𝐹 ∖ {∅}))
19 difss 3285 . . . 4 (𝐹 ∖ {∅}) ⊆ 𝐹
20 cnvss 4835 . . . 4 ((𝐹 ∖ {∅}) ⊆ 𝐹(𝐹 ∖ {∅}) ⊆ 𝐹)
21 cnvss 4835 . . . 4 ((𝐹 ∖ {∅}) ⊆ 𝐹(𝐹 ∖ {∅}) ⊆ 𝐹)
2219, 20, 21mp2b 8 . . 3 (𝐹 ∖ {∅}) ⊆ 𝐹
2318, 22eqsstrrdi 3232 . 2 (𝐹 Struct 𝑋 → (𝐹 ∖ {∅}) ⊆ 𝐹)
2413, 23eqssd 3196 1 (𝐹 Struct 𝑋𝐹 = (𝐹 ∖ {∅}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  cdif 3150  cin 3152  wss 3153  c0 3446  {csn 3618   class class class wbr 4029   × cxp 4657  ccnv 4658  Rel wrel 4664  Fun wfun 5248   Struct cstr 12614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-struct 12620
This theorem is referenced by:  structfung  12635
  Copyright terms: Public domain W3C validator