![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > structcnvcnv | GIF version |
Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
structcnvcnv | ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 = (𝐹 ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 4688 | . . . . . 6 ⊢ ¬ ∅ ∈ (V × V) | |
2 | cnvcnv 5119 | . . . . . . . 8 ⊢ ◡◡𝐹 = (𝐹 ∩ (V × V)) | |
3 | inss2 3381 | . . . . . . . 8 ⊢ (𝐹 ∩ (V × V)) ⊆ (V × V) | |
4 | 2, 3 | eqsstri 3212 | . . . . . . 7 ⊢ ◡◡𝐹 ⊆ (V × V) |
5 | 4 | sseli 3176 | . . . . . 6 ⊢ (∅ ∈ ◡◡𝐹 → ∅ ∈ (V × V)) |
6 | 1, 5 | mto 663 | . . . . 5 ⊢ ¬ ∅ ∈ ◡◡𝐹 |
7 | disjsn 3681 | . . . . 5 ⊢ ((◡◡𝐹 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ◡◡𝐹) | |
8 | 6, 7 | mpbir 146 | . . . 4 ⊢ (◡◡𝐹 ∩ {∅}) = ∅ |
9 | cnvcnvss 5121 | . . . . 5 ⊢ ◡◡𝐹 ⊆ 𝐹 | |
10 | reldisj 3499 | . . . . 5 ⊢ (◡◡𝐹 ⊆ 𝐹 → ((◡◡𝐹 ∩ {∅}) = ∅ ↔ ◡◡𝐹 ⊆ (𝐹 ∖ {∅}))) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ((◡◡𝐹 ∩ {∅}) = ∅ ↔ ◡◡𝐹 ⊆ (𝐹 ∖ {∅})) |
12 | 8, 11 | mpbi 145 | . . 3 ⊢ ◡◡𝐹 ⊆ (𝐹 ∖ {∅}) |
13 | 12 | a1i 9 | . 2 ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 ⊆ (𝐹 ∖ {∅})) |
14 | structn0fun 12634 | . . . . 5 ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) | |
15 | funrel 5272 | . . . . 5 ⊢ (Fun (𝐹 ∖ {∅}) → Rel (𝐹 ∖ {∅})) | |
16 | 14, 15 | syl 14 | . . . 4 ⊢ (𝐹 Struct 𝑋 → Rel (𝐹 ∖ {∅})) |
17 | dfrel2 5117 | . . . 4 ⊢ (Rel (𝐹 ∖ {∅}) ↔ ◡◡(𝐹 ∖ {∅}) = (𝐹 ∖ {∅})) | |
18 | 16, 17 | sylib 122 | . . 3 ⊢ (𝐹 Struct 𝑋 → ◡◡(𝐹 ∖ {∅}) = (𝐹 ∖ {∅})) |
19 | difss 3286 | . . . 4 ⊢ (𝐹 ∖ {∅}) ⊆ 𝐹 | |
20 | cnvss 4836 | . . . 4 ⊢ ((𝐹 ∖ {∅}) ⊆ 𝐹 → ◡(𝐹 ∖ {∅}) ⊆ ◡𝐹) | |
21 | cnvss 4836 | . . . 4 ⊢ (◡(𝐹 ∖ {∅}) ⊆ ◡𝐹 → ◡◡(𝐹 ∖ {∅}) ⊆ ◡◡𝐹) | |
22 | 19, 20, 21 | mp2b 8 | . . 3 ⊢ ◡◡(𝐹 ∖ {∅}) ⊆ ◡◡𝐹 |
23 | 18, 22 | eqsstrrdi 3233 | . 2 ⊢ (𝐹 Struct 𝑋 → (𝐹 ∖ {∅}) ⊆ ◡◡𝐹) |
24 | 13, 23 | eqssd 3197 | 1 ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 = (𝐹 ∖ {∅})) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∖ cdif 3151 ∩ cin 3153 ⊆ wss 3154 ∅c0 3447 {csn 3619 class class class wbr 4030 × cxp 4658 ◡ccnv 4659 Rel wrel 4665 Fun wfun 5249 Struct cstr 12617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-struct 12623 |
This theorem is referenced by: structfung 12638 |
Copyright terms: Public domain | W3C validator |