ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structcnvcnv GIF version

Theorem structcnvcnv 12892
Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
structcnvcnv (𝐹 Struct 𝑋𝐹 = (𝐹 ∖ {∅}))

Proof of Theorem structcnvcnv
StepHypRef Expression
1 0nelxp 4707 . . . . . 6 ¬ ∅ ∈ (V × V)
2 cnvcnv 5140 . . . . . . . 8 𝐹 = (𝐹 ∩ (V × V))
3 inss2 3395 . . . . . . . 8 (𝐹 ∩ (V × V)) ⊆ (V × V)
42, 3eqsstri 3226 . . . . . . 7 𝐹 ⊆ (V × V)
54sseli 3190 . . . . . 6 (∅ ∈ 𝐹 → ∅ ∈ (V × V))
61, 5mto 664 . . . . 5 ¬ ∅ ∈ 𝐹
7 disjsn 3696 . . . . 5 ((𝐹 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝐹)
86, 7mpbir 146 . . . 4 (𝐹 ∩ {∅}) = ∅
9 cnvcnvss 5142 . . . . 5 𝐹𝐹
10 reldisj 3513 . . . . 5 (𝐹𝐹 → ((𝐹 ∩ {∅}) = ∅ ↔ 𝐹 ⊆ (𝐹 ∖ {∅})))
119, 10ax-mp 5 . . . 4 ((𝐹 ∩ {∅}) = ∅ ↔ 𝐹 ⊆ (𝐹 ∖ {∅}))
128, 11mpbi 145 . . 3 𝐹 ⊆ (𝐹 ∖ {∅})
1312a1i 9 . 2 (𝐹 Struct 𝑋𝐹 ⊆ (𝐹 ∖ {∅}))
14 structn0fun 12889 . . . . 5 (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}))
15 funrel 5293 . . . . 5 (Fun (𝐹 ∖ {∅}) → Rel (𝐹 ∖ {∅}))
1614, 15syl 14 . . . 4 (𝐹 Struct 𝑋 → Rel (𝐹 ∖ {∅}))
17 dfrel2 5138 . . . 4 (Rel (𝐹 ∖ {∅}) ↔ (𝐹 ∖ {∅}) = (𝐹 ∖ {∅}))
1816, 17sylib 122 . . 3 (𝐹 Struct 𝑋(𝐹 ∖ {∅}) = (𝐹 ∖ {∅}))
19 difss 3300 . . . 4 (𝐹 ∖ {∅}) ⊆ 𝐹
20 cnvss 4855 . . . 4 ((𝐹 ∖ {∅}) ⊆ 𝐹(𝐹 ∖ {∅}) ⊆ 𝐹)
21 cnvss 4855 . . . 4 ((𝐹 ∖ {∅}) ⊆ 𝐹(𝐹 ∖ {∅}) ⊆ 𝐹)
2219, 20, 21mp2b 8 . . 3 (𝐹 ∖ {∅}) ⊆ 𝐹
2318, 22eqsstrrdi 3247 . 2 (𝐹 Struct 𝑋 → (𝐹 ∖ {∅}) ⊆ 𝐹)
2413, 23eqssd 3211 1 (𝐹 Struct 𝑋𝐹 = (𝐹 ∖ {∅}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  cdif 3164  cin 3166  wss 3167  c0 3461  {csn 3634   class class class wbr 4047   × cxp 4677  ccnv 4678  Rel wrel 4684  Fun wfun 5270   Struct cstr 12872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284  df-struct 12878
This theorem is referenced by:  structfung  12893
  Copyright terms: Public domain W3C validator