| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > structcnvcnv | GIF version | ||
| Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| structcnvcnv | ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 = (𝐹 ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 4747 | . . . . . 6 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | cnvcnv 5181 | . . . . . . . 8 ⊢ ◡◡𝐹 = (𝐹 ∩ (V × V)) | |
| 3 | inss2 3425 | . . . . . . . 8 ⊢ (𝐹 ∩ (V × V)) ⊆ (V × V) | |
| 4 | 2, 3 | eqsstri 3256 | . . . . . . 7 ⊢ ◡◡𝐹 ⊆ (V × V) |
| 5 | 4 | sseli 3220 | . . . . . 6 ⊢ (∅ ∈ ◡◡𝐹 → ∅ ∈ (V × V)) |
| 6 | 1, 5 | mto 666 | . . . . 5 ⊢ ¬ ∅ ∈ ◡◡𝐹 |
| 7 | disjsn 3728 | . . . . 5 ⊢ ((◡◡𝐹 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ◡◡𝐹) | |
| 8 | 6, 7 | mpbir 146 | . . . 4 ⊢ (◡◡𝐹 ∩ {∅}) = ∅ |
| 9 | cnvcnvss 5183 | . . . . 5 ⊢ ◡◡𝐹 ⊆ 𝐹 | |
| 10 | reldisj 3543 | . . . . 5 ⊢ (◡◡𝐹 ⊆ 𝐹 → ((◡◡𝐹 ∩ {∅}) = ∅ ↔ ◡◡𝐹 ⊆ (𝐹 ∖ {∅}))) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ((◡◡𝐹 ∩ {∅}) = ∅ ↔ ◡◡𝐹 ⊆ (𝐹 ∖ {∅})) |
| 12 | 8, 11 | mpbi 145 | . . 3 ⊢ ◡◡𝐹 ⊆ (𝐹 ∖ {∅}) |
| 13 | 12 | a1i 9 | . 2 ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 ⊆ (𝐹 ∖ {∅})) |
| 14 | structn0fun 13053 | . . . . 5 ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) | |
| 15 | funrel 5335 | . . . . 5 ⊢ (Fun (𝐹 ∖ {∅}) → Rel (𝐹 ∖ {∅})) | |
| 16 | 14, 15 | syl 14 | . . . 4 ⊢ (𝐹 Struct 𝑋 → Rel (𝐹 ∖ {∅})) |
| 17 | dfrel2 5179 | . . . 4 ⊢ (Rel (𝐹 ∖ {∅}) ↔ ◡◡(𝐹 ∖ {∅}) = (𝐹 ∖ {∅})) | |
| 18 | 16, 17 | sylib 122 | . . 3 ⊢ (𝐹 Struct 𝑋 → ◡◡(𝐹 ∖ {∅}) = (𝐹 ∖ {∅})) |
| 19 | difss 3330 | . . . 4 ⊢ (𝐹 ∖ {∅}) ⊆ 𝐹 | |
| 20 | cnvss 4895 | . . . 4 ⊢ ((𝐹 ∖ {∅}) ⊆ 𝐹 → ◡(𝐹 ∖ {∅}) ⊆ ◡𝐹) | |
| 21 | cnvss 4895 | . . . 4 ⊢ (◡(𝐹 ∖ {∅}) ⊆ ◡𝐹 → ◡◡(𝐹 ∖ {∅}) ⊆ ◡◡𝐹) | |
| 22 | 19, 20, 21 | mp2b 8 | . . 3 ⊢ ◡◡(𝐹 ∖ {∅}) ⊆ ◡◡𝐹 |
| 23 | 18, 22 | eqsstrrdi 3277 | . 2 ⊢ (𝐹 Struct 𝑋 → (𝐹 ∖ {∅}) ⊆ ◡◡𝐹) |
| 24 | 13, 23 | eqssd 3241 | 1 ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 = (𝐹 ∖ {∅})) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∖ cdif 3194 ∩ cin 3196 ⊆ wss 3197 ∅c0 3491 {csn 3666 class class class wbr 4083 × cxp 4717 ◡ccnv 4718 Rel wrel 4724 Fun wfun 5312 Struct cstr 13036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-struct 13042 |
| This theorem is referenced by: structfung 13057 |
| Copyright terms: Public domain | W3C validator |