![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > structcnvcnv | GIF version |
Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
structcnvcnv | ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 = (𝐹 ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 4687 | . . . . . 6 ⊢ ¬ ∅ ∈ (V × V) | |
2 | cnvcnv 5118 | . . . . . . . 8 ⊢ ◡◡𝐹 = (𝐹 ∩ (V × V)) | |
3 | inss2 3380 | . . . . . . . 8 ⊢ (𝐹 ∩ (V × V)) ⊆ (V × V) | |
4 | 2, 3 | eqsstri 3211 | . . . . . . 7 ⊢ ◡◡𝐹 ⊆ (V × V) |
5 | 4 | sseli 3175 | . . . . . 6 ⊢ (∅ ∈ ◡◡𝐹 → ∅ ∈ (V × V)) |
6 | 1, 5 | mto 663 | . . . . 5 ⊢ ¬ ∅ ∈ ◡◡𝐹 |
7 | disjsn 3680 | . . . . 5 ⊢ ((◡◡𝐹 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ◡◡𝐹) | |
8 | 6, 7 | mpbir 146 | . . . 4 ⊢ (◡◡𝐹 ∩ {∅}) = ∅ |
9 | cnvcnvss 5120 | . . . . 5 ⊢ ◡◡𝐹 ⊆ 𝐹 | |
10 | reldisj 3498 | . . . . 5 ⊢ (◡◡𝐹 ⊆ 𝐹 → ((◡◡𝐹 ∩ {∅}) = ∅ ↔ ◡◡𝐹 ⊆ (𝐹 ∖ {∅}))) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ((◡◡𝐹 ∩ {∅}) = ∅ ↔ ◡◡𝐹 ⊆ (𝐹 ∖ {∅})) |
12 | 8, 11 | mpbi 145 | . . 3 ⊢ ◡◡𝐹 ⊆ (𝐹 ∖ {∅}) |
13 | 12 | a1i 9 | . 2 ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 ⊆ (𝐹 ∖ {∅})) |
14 | structn0fun 12631 | . . . . 5 ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) | |
15 | funrel 5271 | . . . . 5 ⊢ (Fun (𝐹 ∖ {∅}) → Rel (𝐹 ∖ {∅})) | |
16 | 14, 15 | syl 14 | . . . 4 ⊢ (𝐹 Struct 𝑋 → Rel (𝐹 ∖ {∅})) |
17 | dfrel2 5116 | . . . 4 ⊢ (Rel (𝐹 ∖ {∅}) ↔ ◡◡(𝐹 ∖ {∅}) = (𝐹 ∖ {∅})) | |
18 | 16, 17 | sylib 122 | . . 3 ⊢ (𝐹 Struct 𝑋 → ◡◡(𝐹 ∖ {∅}) = (𝐹 ∖ {∅})) |
19 | difss 3285 | . . . 4 ⊢ (𝐹 ∖ {∅}) ⊆ 𝐹 | |
20 | cnvss 4835 | . . . 4 ⊢ ((𝐹 ∖ {∅}) ⊆ 𝐹 → ◡(𝐹 ∖ {∅}) ⊆ ◡𝐹) | |
21 | cnvss 4835 | . . . 4 ⊢ (◡(𝐹 ∖ {∅}) ⊆ ◡𝐹 → ◡◡(𝐹 ∖ {∅}) ⊆ ◡◡𝐹) | |
22 | 19, 20, 21 | mp2b 8 | . . 3 ⊢ ◡◡(𝐹 ∖ {∅}) ⊆ ◡◡𝐹 |
23 | 18, 22 | eqsstrrdi 3232 | . 2 ⊢ (𝐹 Struct 𝑋 → (𝐹 ∖ {∅}) ⊆ ◡◡𝐹) |
24 | 13, 23 | eqssd 3196 | 1 ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 = (𝐹 ∖ {∅})) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∖ cdif 3150 ∩ cin 3152 ⊆ wss 3153 ∅c0 3446 {csn 3618 class class class wbr 4029 × cxp 4657 ◡ccnv 4658 Rel wrel 4664 Fun wfun 5248 Struct cstr 12614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-struct 12620 |
This theorem is referenced by: structfung 12635 |
Copyright terms: Public domain | W3C validator |