![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imaundir | GIF version |
Description: The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.) |
Ref | Expression |
---|---|
imaundir | ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4465 | . . 3 ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ran ((𝐴 ∪ 𝐵) ↾ 𝐶) | |
2 | resundir 4740 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) | |
3 | 2 | rneqi 4676 | . . 3 ⊢ ran ((𝐴 ∪ 𝐵) ↾ 𝐶) = ran ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
4 | rnun 4853 | . . 3 ⊢ ran ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) = (ran (𝐴 ↾ 𝐶) ∪ ran (𝐵 ↾ 𝐶)) | |
5 | 1, 3, 4 | 3eqtri 2113 | . 2 ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = (ran (𝐴 ↾ 𝐶) ∪ ran (𝐵 ↾ 𝐶)) |
6 | df-ima 4465 | . . 3 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
7 | df-ima 4465 | . . 3 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
8 | 6, 7 | uneq12i 3153 | . 2 ⊢ ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) = (ran (𝐴 ↾ 𝐶) ∪ ran (𝐵 ↾ 𝐶)) |
9 | 5, 8 | eqtr4i 2112 | 1 ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 ∪ cun 2998 ran crn 4453 ↾ cres 4454 “ cima 4455 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-sn 3456 df-pr 3457 df-op 3459 df-br 3852 df-opab 3906 df-cnv 4460 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 |
This theorem is referenced by: fvun1 5383 |
Copyright terms: Public domain | W3C validator |