Proof of Theorem fseq1p1m1
Step | Hyp | Ref
| Expression |
1 | | simpr1 993 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐹:(1...𝑁)⟶𝐴) |
2 | | nn0p1nn 9153 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
3 | 2 | adantr 274 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝑁 + 1) ∈ ℕ) |
4 | | simpr2 994 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐵 ∈ 𝐴) |
5 | | fseq1p1m1.1 |
. . . . . . . . 9
⊢ 𝐻 = {〈(𝑁 + 1), 𝐵〉} |
6 | | fsng 5658 |
. . . . . . . . 9
⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝐵 ∈ 𝐴) → (𝐻:{(𝑁 + 1)}⟶{𝐵} ↔ 𝐻 = {〈(𝑁 + 1), 𝐵〉})) |
7 | 5, 6 | mpbiri 167 |
. . . . . . . 8
⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝐵 ∈ 𝐴) → 𝐻:{(𝑁 + 1)}⟶{𝐵}) |
8 | 3, 4, 7 | syl2anc 409 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐻:{(𝑁 + 1)}⟶{𝐵}) |
9 | 4 | snssd 3718 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → {𝐵} ⊆ 𝐴) |
10 | 8, 9 | fssd 5350 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐻:{(𝑁 + 1)}⟶𝐴) |
11 | | fzp1disj 10015 |
. . . . . . 7
⊢
((1...𝑁) ∩
{(𝑁 + 1)}) =
∅ |
12 | 11 | a1i 9 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) |
13 | | fun2 5361 |
. . . . . 6
⊢ (((𝐹:(1...𝑁)⟶𝐴 ∧ 𝐻:{(𝑁 + 1)}⟶𝐴) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → (𝐹 ∪ 𝐻):((1...𝑁) ∪ {(𝑁 + 1)})⟶𝐴) |
14 | 1, 10, 12, 13 | syl21anc 1227 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐹 ∪ 𝐻):((1...𝑁) ∪ {(𝑁 + 1)})⟶𝐴) |
15 | | 1z 9217 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
16 | | simpl 108 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝑁 ∈
ℕ0) |
17 | | nn0uz 9500 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
18 | | 1m1e0 8926 |
. . . . . . . . . . 11
⊢ (1
− 1) = 0 |
19 | 18 | fveq2i 5489 |
. . . . . . . . . 10
⊢
(ℤ≥‘(1 − 1)) =
(ℤ≥‘0) |
20 | 17, 19 | eqtr4i 2189 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘(1 −
1)) |
21 | 16, 20 | eleqtrdi 2259 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝑁 ∈ (ℤ≥‘(1
− 1))) |
22 | | fzsuc2 10014 |
. . . . . . . 8
⊢ ((1
∈ ℤ ∧ 𝑁
∈ (ℤ≥‘(1 − 1))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)})) |
23 | 15, 21, 22 | sylancr 411 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)})) |
24 | 23 | eqcomd 2171 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((1...𝑁) ∪ {(𝑁 + 1)}) = (1...(𝑁 + 1))) |
25 | 24 | feq2d 5325 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐹 ∪ 𝐻):((1...𝑁) ∪ {(𝑁 + 1)})⟶𝐴 ↔ (𝐹 ∪ 𝐻):(1...(𝑁 + 1))⟶𝐴)) |
26 | 14, 25 | mpbid 146 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐹 ∪ 𝐻):(1...(𝑁 + 1))⟶𝐴) |
27 | | simpr3 995 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐺 = (𝐹 ∪ 𝐻)) |
28 | 27 | feq1d 5324 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺:(1...(𝑁 + 1))⟶𝐴 ↔ (𝐹 ∪ 𝐻):(1...(𝑁 + 1))⟶𝐴)) |
29 | 26, 28 | mpbird 166 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐺:(1...(𝑁 + 1))⟶𝐴) |
30 | 27 | reseq1d 4883 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺 ↾ {(𝑁 + 1)}) = ((𝐹 ∪ 𝐻) ↾ {(𝑁 + 1)})) |
31 | | ffn 5337 |
. . . . . . . . . 10
⊢ (𝐹:(1...𝑁)⟶𝐴 → 𝐹 Fn (1...𝑁)) |
32 | | fnresdisj 5298 |
. . . . . . . . . 10
⊢ (𝐹 Fn (1...𝑁) → (((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ (𝐹 ↾ {(𝑁 + 1)}) = ∅)) |
33 | 1, 31, 32 | 3syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ (𝐹 ↾ {(𝑁 + 1)}) = ∅)) |
34 | 12, 33 | mpbid 146 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐹 ↾ {(𝑁 + 1)}) = ∅) |
35 | 34 | uneq1d 3275 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐹 ↾ {(𝑁 + 1)}) ∪ (𝐻 ↾ {(𝑁 + 1)})) = (∅ ∪ (𝐻 ↾ {(𝑁 + 1)}))) |
36 | | resundir 4898 |
. . . . . . 7
⊢ ((𝐹 ∪ 𝐻) ↾ {(𝑁 + 1)}) = ((𝐹 ↾ {(𝑁 + 1)}) ∪ (𝐻 ↾ {(𝑁 + 1)})) |
37 | | uncom 3266 |
. . . . . . . 8
⊢ (∅
∪ (𝐻 ↾ {(𝑁 + 1)})) = ((𝐻 ↾ {(𝑁 + 1)}) ∪ ∅) |
38 | | un0 3442 |
. . . . . . . 8
⊢ ((𝐻 ↾ {(𝑁 + 1)}) ∪ ∅) = (𝐻 ↾ {(𝑁 + 1)}) |
39 | 37, 38 | eqtr2i 2187 |
. . . . . . 7
⊢ (𝐻 ↾ {(𝑁 + 1)}) = (∅ ∪ (𝐻 ↾ {(𝑁 + 1)})) |
40 | 35, 36, 39 | 3eqtr4g 2224 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐹 ∪ 𝐻) ↾ {(𝑁 + 1)}) = (𝐻 ↾ {(𝑁 + 1)})) |
41 | | ffn 5337 |
. . . . . . 7
⊢ (𝐻:{(𝑁 + 1)}⟶𝐴 → 𝐻 Fn {(𝑁 + 1)}) |
42 | | fnresdm 5297 |
. . . . . . 7
⊢ (𝐻 Fn {(𝑁 + 1)} → (𝐻 ↾ {(𝑁 + 1)}) = 𝐻) |
43 | 10, 41, 42 | 3syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐻 ↾ {(𝑁 + 1)}) = 𝐻) |
44 | 30, 40, 43 | 3eqtrd 2202 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺 ↾ {(𝑁 + 1)}) = 𝐻) |
45 | 44 | fveq1d 5488 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐻‘(𝑁 + 1))) |
46 | 16 | nn0zd 9311 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝑁 ∈ ℤ) |
47 | 46 | peano2zd 9316 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝑁 + 1) ∈ ℤ) |
48 | | snidg 3605 |
. . . . 5
⊢ ((𝑁 + 1) ∈ ℤ →
(𝑁 + 1) ∈ {(𝑁 + 1)}) |
49 | | fvres 5510 |
. . . . 5
⊢ ((𝑁 + 1) ∈ {(𝑁 + 1)} → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1))) |
50 | 47, 48, 49 | 3syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1))) |
51 | 5 | fveq1i 5487 |
. . . . . 6
⊢ (𝐻‘(𝑁 + 1)) = ({〈(𝑁 + 1), 𝐵〉}‘(𝑁 + 1)) |
52 | | fvsng 5681 |
. . . . . 6
⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝐵 ∈ 𝐴) → ({〈(𝑁 + 1), 𝐵〉}‘(𝑁 + 1)) = 𝐵) |
53 | 51, 52 | syl5eq 2211 |
. . . . 5
⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝐵 ∈ 𝐴) → (𝐻‘(𝑁 + 1)) = 𝐵) |
54 | 3, 4, 53 | syl2anc 409 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐻‘(𝑁 + 1)) = 𝐵) |
55 | 45, 50, 54 | 3eqtr3d 2206 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺‘(𝑁 + 1)) = 𝐵) |
56 | 27 | reseq1d 4883 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺 ↾ (1...𝑁)) = ((𝐹 ∪ 𝐻) ↾ (1...𝑁))) |
57 | | incom 3314 |
. . . . . . . 8
⊢ ({(𝑁 + 1)} ∩ (1...𝑁)) = ((1...𝑁) ∩ {(𝑁 + 1)}) |
58 | 57, 12 | syl5eq 2211 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ({(𝑁 + 1)} ∩ (1...𝑁)) = ∅) |
59 | | ffn 5337 |
. . . . . . . 8
⊢ (𝐻:{(𝑁 + 1)}⟶{𝐵} → 𝐻 Fn {(𝑁 + 1)}) |
60 | | fnresdisj 5298 |
. . . . . . . 8
⊢ (𝐻 Fn {(𝑁 + 1)} → (({(𝑁 + 1)} ∩ (1...𝑁)) = ∅ ↔ (𝐻 ↾ (1...𝑁)) = ∅)) |
61 | 8, 59, 60 | 3syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (({(𝑁 + 1)} ∩ (1...𝑁)) = ∅ ↔ (𝐻 ↾ (1...𝑁)) = ∅)) |
62 | 58, 61 | mpbid 146 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐻 ↾ (1...𝑁)) = ∅) |
63 | 62 | uneq2d 3276 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐹 ↾ (1...𝑁)) ∪ (𝐻 ↾ (1...𝑁))) = ((𝐹 ↾ (1...𝑁)) ∪ ∅)) |
64 | | resundir 4898 |
. . . . 5
⊢ ((𝐹 ∪ 𝐻) ↾ (1...𝑁)) = ((𝐹 ↾ (1...𝑁)) ∪ (𝐻 ↾ (1...𝑁))) |
65 | | un0 3442 |
. . . . . 6
⊢ ((𝐹 ↾ (1...𝑁)) ∪ ∅) = (𝐹 ↾ (1...𝑁)) |
66 | 65 | eqcomi 2169 |
. . . . 5
⊢ (𝐹 ↾ (1...𝑁)) = ((𝐹 ↾ (1...𝑁)) ∪ ∅) |
67 | 63, 64, 66 | 3eqtr4g 2224 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → ((𝐹 ∪ 𝐻) ↾ (1...𝑁)) = (𝐹 ↾ (1...𝑁))) |
68 | | fnresdm 5297 |
. . . . 5
⊢ (𝐹 Fn (1...𝑁) → (𝐹 ↾ (1...𝑁)) = 𝐹) |
69 | 1, 31, 68 | 3syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐹 ↾ (1...𝑁)) = 𝐹) |
70 | 56, 67, 69 | 3eqtrrd 2203 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → 𝐹 = (𝐺 ↾ (1...𝑁))) |
71 | 29, 55, 70 | 3jca 1167 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) → (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) |
72 | | simpr1 993 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺:(1...(𝑁 + 1))⟶𝐴) |
73 | | fzssp1 10002 |
. . . . 5
⊢
(1...𝑁) ⊆
(1...(𝑁 +
1)) |
74 | | fssres 5363 |
. . . . 5
⊢ ((𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (1...𝑁) ⊆ (1...(𝑁 + 1))) → (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴) |
75 | 72, 73, 74 | sylancl 410 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴) |
76 | | simpr3 995 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐹 = (𝐺 ↾ (1...𝑁))) |
77 | 76 | feq1d 5324 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹:(1...𝑁)⟶𝐴 ↔ (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴)) |
78 | 75, 77 | mpbird 166 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐹:(1...𝑁)⟶𝐴) |
79 | | simpr2 994 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺‘(𝑁 + 1)) = 𝐵) |
80 | 2 | adantr 274 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈ ℕ) |
81 | | nnuz 9501 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
82 | 80, 81 | eleqtrdi 2259 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈
(ℤ≥‘1)) |
83 | | eluzfz2 9967 |
. . . . . 6
⊢ ((𝑁 + 1) ∈
(ℤ≥‘1) → (𝑁 + 1) ∈ (1...(𝑁 + 1))) |
84 | 82, 83 | syl 14 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈ (1...(𝑁 + 1))) |
85 | 72, 84 | ffvelrnd 5621 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺‘(𝑁 + 1)) ∈ 𝐴) |
86 | 79, 85 | eqeltrrd 2244 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐵 ∈ 𝐴) |
87 | | ffn 5337 |
. . . . . . . . 9
⊢ (𝐺:(1...(𝑁 + 1))⟶𝐴 → 𝐺 Fn (1...(𝑁 + 1))) |
88 | 72, 87 | syl 14 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺 Fn (1...(𝑁 + 1))) |
89 | | fnressn 5671 |
. . . . . . . 8
⊢ ((𝐺 Fn (1...(𝑁 + 1)) ∧ (𝑁 + 1) ∈ (1...(𝑁 + 1))) → (𝐺 ↾ {(𝑁 + 1)}) = {〈(𝑁 + 1), (𝐺‘(𝑁 + 1))〉}) |
90 | 88, 84, 89 | syl2anc 409 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ {(𝑁 + 1)}) = {〈(𝑁 + 1), (𝐺‘(𝑁 + 1))〉}) |
91 | | opeq2 3759 |
. . . . . . . . 9
⊢ ((𝐺‘(𝑁 + 1)) = 𝐵 → 〈(𝑁 + 1), (𝐺‘(𝑁 + 1))〉 = 〈(𝑁 + 1), 𝐵〉) |
92 | 91 | sneqd 3589 |
. . . . . . . 8
⊢ ((𝐺‘(𝑁 + 1)) = 𝐵 → {〈(𝑁 + 1), (𝐺‘(𝑁 + 1))〉} = {〈(𝑁 + 1), 𝐵〉}) |
93 | 79, 92 | syl 14 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → {〈(𝑁 + 1), (𝐺‘(𝑁 + 1))〉} = {〈(𝑁 + 1), 𝐵〉}) |
94 | 90, 93 | eqtrd 2198 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ {(𝑁 + 1)}) = {〈(𝑁 + 1), 𝐵〉}) |
95 | 5, 94 | eqtr4id 2218 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐻 = (𝐺 ↾ {(𝑁 + 1)})) |
96 | 76, 95 | uneq12d 3277 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹 ∪ 𝐻) = ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)}))) |
97 | | simpl 108 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝑁 ∈
ℕ0) |
98 | 97, 20 | eleqtrdi 2259 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝑁 ∈ (ℤ≥‘(1
− 1))) |
99 | 15, 98, 22 | sylancr 411 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)})) |
100 | 99 | reseq2d 4884 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...(𝑁 + 1))) = (𝐺 ↾ ((1...𝑁) ∪ {(𝑁 + 1)}))) |
101 | | resundi 4897 |
. . . . 5
⊢ (𝐺 ↾ ((1...𝑁) ∪ {(𝑁 + 1)})) = ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)})) |
102 | 100, 101 | eqtr2di 2216 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)})) = (𝐺 ↾ (1...(𝑁 + 1)))) |
103 | | fnresdm 5297 |
. . . . 5
⊢ (𝐺 Fn (1...(𝑁 + 1)) → (𝐺 ↾ (1...(𝑁 + 1))) = 𝐺) |
104 | 72, 87, 103 | 3syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...(𝑁 + 1))) = 𝐺) |
105 | 96, 102, 104 | 3eqtrrd 2203 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺 = (𝐹 ∪ 𝐻)) |
106 | 78, 86, 105 | 3jca 1167 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻))) |
107 | 71, 106 | impbida 586 |
1
⊢ (𝑁 ∈ ℕ0
→ ((𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁))))) |