ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsnun1 GIF version

Theorem fvsnun1 5835
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 5836. (Contributed by NM, 23-Sep-2007.)
Hypotheses
Ref Expression
fvsnun.1 𝐴 ∈ V
fvsnun.2 𝐵 ∈ V
fvsnun.3 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
Assertion
Ref Expression
fvsnun1 (𝐺𝐴) = 𝐵

Proof of Theorem fvsnun1
StepHypRef Expression
1 fvsnun.3 . . . . 5 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
21reseq1i 5000 . . . 4 (𝐺 ↾ {𝐴}) = (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴})
3 resundir 5018 . . . . 5 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}))
4 incom 3396 . . . . . . . . 9 ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ({𝐴} ∩ (𝐶 ∖ {𝐴}))
5 disjdif 3564 . . . . . . . . 9 ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅
64, 5eqtri 2250 . . . . . . . 8 ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅
7 resdisj 5156 . . . . . . . 8 (((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅)
86, 7ax-mp 5 . . . . . . 7 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅
98uneq2i 3355 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ∅)
10 un0 3525 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ∅) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
119, 10eqtri 2250 . . . . 5 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
123, 11eqtri 2250 . . . 4 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
132, 12eqtri 2250 . . 3 (𝐺 ↾ {𝐴}) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
1413fveq1i 5627 . 2 ((𝐺 ↾ {𝐴})‘𝐴) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴)
15 fvsnun.1 . . . 4 𝐴 ∈ V
1615snid 3697 . . 3 𝐴 ∈ {𝐴}
17 fvres 5650 . . 3 (𝐴 ∈ {𝐴} → ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺𝐴))
1816, 17ax-mp 5 . 2 ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺𝐴)
19 fvres 5650 . . . 4 (𝐴 ∈ {𝐴} → (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = ({⟨𝐴, 𝐵⟩}‘𝐴))
2016, 19ax-mp 5 . . 3 (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = ({⟨𝐴, 𝐵⟩}‘𝐴)
21 fvsnun.2 . . . 4 𝐵 ∈ V
2215, 21fvsn 5833 . . 3 ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵
2320, 22eqtri 2250 . 2 (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = 𝐵
2414, 18, 233eqtr3i 2258 1 (𝐺𝐴) = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  Vcvv 2799  cdif 3194  cun 3195  cin 3196  c0 3491  {csn 3666  cop 3669  cres 4720  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-res 4730  df-iota 5277  df-fun 5319  df-fv 5325
This theorem is referenced by:  fac0  10945
  Copyright terms: Public domain W3C validator