ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsnun1 GIF version

Theorem fvsnun1 5664
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 5665. (Contributed by NM, 23-Sep-2007.)
Hypotheses
Ref Expression
fvsnun.1 𝐴 ∈ V
fvsnun.2 𝐵 ∈ V
fvsnun.3 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
Assertion
Ref Expression
fvsnun1 (𝐺𝐴) = 𝐵

Proof of Theorem fvsnun1
StepHypRef Expression
1 fvsnun.3 . . . . 5 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
21reseq1i 4862 . . . 4 (𝐺 ↾ {𝐴}) = (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴})
3 resundir 4880 . . . . 5 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}))
4 incom 3299 . . . . . . . . 9 ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ({𝐴} ∩ (𝐶 ∖ {𝐴}))
5 disjdif 3466 . . . . . . . . 9 ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅
64, 5eqtri 2178 . . . . . . . 8 ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅
7 resdisj 5014 . . . . . . . 8 (((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅)
86, 7ax-mp 5 . . . . . . 7 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅
98uneq2i 3258 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ∅)
10 un0 3427 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ∅) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
119, 10eqtri 2178 . . . . 5 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
123, 11eqtri 2178 . . . 4 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
132, 12eqtri 2178 . . 3 (𝐺 ↾ {𝐴}) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
1413fveq1i 5469 . 2 ((𝐺 ↾ {𝐴})‘𝐴) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴)
15 fvsnun.1 . . . 4 𝐴 ∈ V
1615snid 3591 . . 3 𝐴 ∈ {𝐴}
17 fvres 5492 . . 3 (𝐴 ∈ {𝐴} → ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺𝐴))
1816, 17ax-mp 5 . 2 ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺𝐴)
19 fvres 5492 . . . 4 (𝐴 ∈ {𝐴} → (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = ({⟨𝐴, 𝐵⟩}‘𝐴))
2016, 19ax-mp 5 . . 3 (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = ({⟨𝐴, 𝐵⟩}‘𝐴)
21 fvsnun.2 . . . 4 𝐵 ∈ V
2215, 21fvsn 5662 . . 3 ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵
2320, 22eqtri 2178 . 2 (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = 𝐵
2414, 18, 233eqtr3i 2186 1 (𝐺𝐴) = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1335  wcel 2128  Vcvv 2712  cdif 3099  cun 3100  cin 3101  c0 3394  {csn 3560  cop 3563  cres 4588  cfv 5170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-res 4598  df-iota 5135  df-fun 5172  df-fv 5178
This theorem is referenced by:  fac0  10602
  Copyright terms: Public domain W3C validator