| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvsnun1 | GIF version | ||
| Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 5781. (Contributed by NM, 23-Sep-2007.) |
| Ref | Expression |
|---|---|
| fvsnun.1 | ⊢ 𝐴 ∈ V |
| fvsnun.2 | ⊢ 𝐵 ∈ V |
| fvsnun.3 | ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
| Ref | Expression |
|---|---|
| fvsnun1 | ⊢ (𝐺‘𝐴) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsnun.3 | . . . . 5 ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) | |
| 2 | 1 | reseq1i 4954 | . . . 4 ⊢ (𝐺 ↾ {𝐴}) = (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) |
| 3 | resundir 4972 | . . . . 5 ⊢ (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) | |
| 4 | incom 3364 | . . . . . . . . 9 ⊢ ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ({𝐴} ∩ (𝐶 ∖ {𝐴})) | |
| 5 | disjdif 3532 | . . . . . . . . 9 ⊢ ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ | |
| 6 | 4, 5 | eqtri 2225 | . . . . . . . 8 ⊢ ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ |
| 7 | resdisj 5110 | . . . . . . . 8 ⊢ (((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . 7 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅ |
| 9 | 8 | uneq2i 3323 | . . . . . 6 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ∅) |
| 10 | un0 3493 | . . . . . 6 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ∅) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) | |
| 11 | 9, 10 | eqtri 2225 | . . . . 5 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
| 12 | 3, 11 | eqtri 2225 | . . . 4 ⊢ (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
| 13 | 2, 12 | eqtri 2225 | . . 3 ⊢ (𝐺 ↾ {𝐴}) = ({〈𝐴, 𝐵〉} ↾ {𝐴}) |
| 14 | 13 | fveq1i 5576 | . 2 ⊢ ((𝐺 ↾ {𝐴})‘𝐴) = (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) |
| 15 | fvsnun.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 16 | 15 | snid 3663 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
| 17 | fvres 5599 | . . 3 ⊢ (𝐴 ∈ {𝐴} → ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺‘𝐴)) | |
| 18 | 16, 17 | ax-mp 5 | . 2 ⊢ ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺‘𝐴) |
| 19 | fvres 5599 | . . . 4 ⊢ (𝐴 ∈ {𝐴} → (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) = ({〈𝐴, 𝐵〉}‘𝐴)) | |
| 20 | 16, 19 | ax-mp 5 | . . 3 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) = ({〈𝐴, 𝐵〉}‘𝐴) |
| 21 | fvsnun.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 22 | 15, 21 | fvsn 5778 | . . 3 ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
| 23 | 20, 22 | eqtri 2225 | . 2 ⊢ (({〈𝐴, 𝐵〉} ↾ {𝐴})‘𝐴) = 𝐵 |
| 24 | 14, 18, 23 | 3eqtr3i 2233 | 1 ⊢ (𝐺‘𝐴) = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∖ cdif 3162 ∪ cun 3163 ∩ cin 3164 ∅c0 3459 {csn 3632 〈cop 3635 ↾ cres 4676 ‘cfv 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-res 4686 df-iota 5231 df-fun 5272 df-fv 5278 |
| This theorem is referenced by: fac0 10871 |
| Copyright terms: Public domain | W3C validator |