ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsnun1 GIF version

Theorem fvsnun1 5780
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 5781. (Contributed by NM, 23-Sep-2007.)
Hypotheses
Ref Expression
fvsnun.1 𝐴 ∈ V
fvsnun.2 𝐵 ∈ V
fvsnun.3 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
Assertion
Ref Expression
fvsnun1 (𝐺𝐴) = 𝐵

Proof of Theorem fvsnun1
StepHypRef Expression
1 fvsnun.3 . . . . 5 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
21reseq1i 4954 . . . 4 (𝐺 ↾ {𝐴}) = (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴})
3 resundir 4972 . . . . 5 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}))
4 incom 3364 . . . . . . . . 9 ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ({𝐴} ∩ (𝐶 ∖ {𝐴}))
5 disjdif 3532 . . . . . . . . 9 ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅
64, 5eqtri 2225 . . . . . . . 8 ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅
7 resdisj 5110 . . . . . . . 8 (((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅)
86, 7ax-mp 5 . . . . . . 7 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅
98uneq2i 3323 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ∅)
10 un0 3493 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ∅) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
119, 10eqtri 2225 . . . . 5 (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
123, 11eqtri 2225 . . . 4 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
132, 12eqtri 2225 . . 3 (𝐺 ↾ {𝐴}) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴})
1413fveq1i 5576 . 2 ((𝐺 ↾ {𝐴})‘𝐴) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴)
15 fvsnun.1 . . . 4 𝐴 ∈ V
1615snid 3663 . . 3 𝐴 ∈ {𝐴}
17 fvres 5599 . . 3 (𝐴 ∈ {𝐴} → ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺𝐴))
1816, 17ax-mp 5 . 2 ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺𝐴)
19 fvres 5599 . . . 4 (𝐴 ∈ {𝐴} → (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = ({⟨𝐴, 𝐵⟩}‘𝐴))
2016, 19ax-mp 5 . . 3 (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = ({⟨𝐴, 𝐵⟩}‘𝐴)
21 fvsnun.2 . . . 4 𝐵 ∈ V
2215, 21fvsn 5778 . . 3 ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵
2320, 22eqtri 2225 . 2 (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = 𝐵
2414, 18, 233eqtr3i 2233 1 (𝐺𝐴) = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wcel 2175  Vcvv 2771  cdif 3162  cun 3163  cin 3164  c0 3459  {csn 3632  cop 3635  cres 4676  cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-res 4686  df-iota 5231  df-fun 5272  df-fv 5278
This theorem is referenced by:  fac0  10871
  Copyright terms: Public domain W3C validator