![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvsnun1 | GIF version |
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 5717. (Contributed by NM, 23-Sep-2007.) |
Ref | Expression |
---|---|
fvsnun.1 | ⊢ 𝐴 ∈ V |
fvsnun.2 | ⊢ 𝐵 ∈ V |
fvsnun.3 | ⊢ 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
Ref | Expression |
---|---|
fvsnun1 | ⊢ (𝐺‘𝐴) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvsnun.3 | . . . . 5 ⊢ 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) | |
2 | 1 | reseq1i 4905 | . . . 4 ⊢ (𝐺 ↾ {𝐴}) = (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) |
3 | resundir 4923 | . . . . 5 ⊢ (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) | |
4 | incom 3329 | . . . . . . . . 9 ⊢ ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ({𝐴} ∩ (𝐶 ∖ {𝐴})) | |
5 | disjdif 3497 | . . . . . . . . 9 ⊢ ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ | |
6 | 4, 5 | eqtri 2198 | . . . . . . . 8 ⊢ ((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ |
7 | resdisj 5059 | . . . . . . . 8 ⊢ (((𝐶 ∖ {𝐴}) ∩ {𝐴}) = ∅ → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅) | |
8 | 6, 7 | ax-mp 5 | . . . . . . 7 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴}) = ∅ |
9 | 8 | uneq2i 3288 | . . . . . 6 ⊢ (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ∅) |
10 | un0 3458 | . . . . . 6 ⊢ (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ∅) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴}) | |
11 | 9, 10 | eqtri 2198 | . . . . 5 ⊢ (({⟨𝐴, 𝐵⟩} ↾ {𝐴}) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ {𝐴})) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴}) |
12 | 3, 11 | eqtri 2198 | . . . 4 ⊢ (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ {𝐴}) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴}) |
13 | 2, 12 | eqtri 2198 | . . 3 ⊢ (𝐺 ↾ {𝐴}) = ({⟨𝐴, 𝐵⟩} ↾ {𝐴}) |
14 | 13 | fveq1i 5518 | . 2 ⊢ ((𝐺 ↾ {𝐴})‘𝐴) = (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) |
15 | fvsnun.1 | . . . 4 ⊢ 𝐴 ∈ V | |
16 | 15 | snid 3625 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
17 | fvres 5541 | . . 3 ⊢ (𝐴 ∈ {𝐴} → ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺‘𝐴)) | |
18 | 16, 17 | ax-mp 5 | . 2 ⊢ ((𝐺 ↾ {𝐴})‘𝐴) = (𝐺‘𝐴) |
19 | fvres 5541 | . . . 4 ⊢ (𝐴 ∈ {𝐴} → (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = ({⟨𝐴, 𝐵⟩}‘𝐴)) | |
20 | 16, 19 | ax-mp 5 | . . 3 ⊢ (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = ({⟨𝐴, 𝐵⟩}‘𝐴) |
21 | fvsnun.2 | . . . 4 ⊢ 𝐵 ∈ V | |
22 | 15, 21 | fvsn 5714 | . . 3 ⊢ ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵 |
23 | 20, 22 | eqtri 2198 | . 2 ⊢ (({⟨𝐴, 𝐵⟩} ↾ {𝐴})‘𝐴) = 𝐵 |
24 | 14, 18, 23 | 3eqtr3i 2206 | 1 ⊢ (𝐺‘𝐴) = 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∖ cdif 3128 ∪ cun 3129 ∩ cin 3130 ∅c0 3424 {csn 3594 ⟨cop 3597 ↾ cres 4630 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-res 4640 df-iota 5180 df-fun 5220 df-fv 5226 |
This theorem is referenced by: fac0 10711 |
Copyright terms: Public domain | W3C validator |